elk/src/heap-gen.c

1690 lines
50 KiB
C

/* heap-gen.c: The generational, incremental garbage collector.
* Written by Marco Scheibe. Fixes provided by Craig McPheeters,
* Carsten Bormann, Jon Hartlaub, Charlie Xiaoli Huang, Gal Shalif.
*
* This garbage collector is still experimental and probably needs to be
* rewritten at least in parts. See also ../BUGS. If your application
* does not work correctly and you suspect the generational garbage
* collector to be the culprit, try the stop-and-copy GC instead.
*
* $Id$
*
* Copyright 1990, 1991, 1992, 1993, 1994, 1995, Oliver Laumann, Berlin
* Copyright 2002, 2003 Sam Hocevar <sam@zoy.org>, Paris
*
* This software was derived from Elk 1.2, which was Copyright 1987, 1988,
* 1989, Nixdorf Computer AG and TELES GmbH, Berlin (Elk 1.2 has been written
* by Oliver Laumann for TELES Telematic Services, Berlin, in a joint project
* between TELES and Nixdorf Microprocessor Engineering, Berlin).
*
* Oliver Laumann, TELES GmbH, Nixdorf Computer AG and Sam Hocevar, as co-
* owners or individual owners of copyright in this software, grant to any
* person or company a worldwide, royalty free, license to
*
* i) copy this software,
* ii) prepare derivative works based on this software,
* iii) distribute copies of this software or derivative works,
* iv) perform this software, or
* v) display this software,
*
* provided that this notice is not removed and that neither Oliver Laumann
* nor Teles nor Nixdorf are deemed to have made any representations as to
* the suitability of this software for any purpose nor are held responsible
* for any defects of this software.
*
* THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
*/
#include <limits.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#if defined(MPROTECT_SIG) || defined(MPROTECT_MMAP)
# include <sys/mman.h>
#endif
#if defined(HAVE_GETPAGESIZE) || defined(SC_PAGESIZE_IN_UNISTD_H)
# include <unistd.h>
# if defined(_SC_PAGE_SIZE) && !defined(_SC_PAGESIZE) /* Wrong in HP-UX */
# define _SC_PAGESIZE _SC_PAGE_SIZE
# endif
#endif
#ifdef SIGSEGV_SIGINFO
# include <siginfo.h>
# include <ucontext.h>
#endif
/* The following variables may be set from outside the collector to
* fine-tune some used parameters.
*/
int tuneable_forward_region = 5; /* fraction of heap pages that are tried
* to allocate as forward region when
* collecting.
*/
int tuneable_force_total = 35; /* % newly allocated during collection
* to force total collection
*/
int tuneable_newly_expand = 25; /* % of heap newly allocated during
* a total collection to force heap
* expansion.
*/
int tuneable_force_expand = 20; /* % stable to force heap expansion
*/
/* ------------------------------------------------------------------------
defined in object.h:
typedef int gcspace_t; // type used for space and type arrays
typedef unsigned int gcptr_t; // type used for pointers
------------------------------------------------------------------------ */
static int percent = 0;
static pageno_t old_logical_pages;
static int inc_collection = 0;
static int incomplete_msg = 0;
static pageno_t logical_pages, spanning_pages, physical_pages;
/* pagebase is #defined in object.h if ARRAY_BROKEN is not defined. */
#ifdef ARRAY_BROKEN
pageno_t pagebase;
#endif
static pageno_t firstpage, lastpage;
static char *saved_heap_ptr;
gcspace_t *space;
static gcspace_t *type, *pmap;
static pageno_t *linked;
static pageno_t current_pages, forwarded_pages;
static pageno_t protected_pages, allocated_pages;
static addrarith_t bytes_per_pp, pp_shift; /* bytes per physical page */
static addrarith_t hp_per_pp; /* number of heap pages per physical page */
static addrarith_t pp_mask; /* ANDed with a virtual address gives
* base address of physical page
*/
static addrarith_t hp_per_pp_mask; /* ANDed with heap page number gives
* first page number in the physical
* page the heap page belongs to.
*/
#define SAME_PHYSPAGE(a,b) (((a) & pp_mask) == ((b) & pp_mask))
gcspace_t current_space; /* has to be exported because IS_ALIVE depends on it */
static gcspace_t forward_space, previous_space;
static pageno_t current_freepage, current_free;
static pageno_t forward_freepage, forward_free;
static pageno_t last_forward_freepage;
static Object *current_freep, *forward_freep;
static int scanning = 0; /* set to true if scanning a
* physical page is in progress */
static Object *scanpointer;
static Object *scanfirst, *scanlast;
#define IN_SCANREGION(addr) ((Object*)(addr) >= scanfirst \
&& (Object*)(addr) <= scanlast)
#define IS_SCANNED(addr) ((Object *)(addr) < scanpointer)
#define MAXRESCAN 10
static pageno_t rescan[MAXRESCAN];
static int rescanpages = 0;
static int allscan = 0;
static pageno_t stable_queue, stable_tail; /* head and tail of the queue
* of stable pages */
#define DIRTYENTRIES 20
struct dirty_rec {
pageno_t pages[DIRTYENTRIES];
struct dirty_rec *next;
};
static struct dirty_rec *dirtylist, *dirtyhead;
static int dirtyentries;
static int ScanCluster ();
static int Scanner ();
static void TerminateGC ();
/*****************************************************************************/
/* PAGEBYTES is defined in object.h */
#define PAGEWORDS ((addrarith_t)(PAGEBYTES / sizeof (Object)))
#define HEAPPAGEMASK ~((gcptr_t)PAGEBYTES-1)
#ifdef ALIGN_8BYTE
# define MAX_OBJECTWORDS (PAGEWORDS - 1)
# define NEEDED_PAGES(size) (((size) + PAGEWORDS) / PAGEWORDS)
#else
# define MAX_OBJECTWORDS PAGEWORDS
# define NEEDED_PAGES(size) (((size) + PAGEWORDS - 1) / PAGEWORDS)
#endif
#define MAKE_HEADER(obj,words,type) (SET(obj, type, words))
#define HEADER_TO_TYPE(header) ((unsigned int)TYPE(header))
#define HEADER_TO_WORDS(header) ((unsigned int)FIXNUM(header))
/* some conversion stuff. PHYSPAGE converts a logical page number into the
* start address of the physical page the logical page lies on.
* If ARRAY_BROKEN is defined, page numbering will start at 0 for the
* first heap page. Not that this will introduce some extra overhead.
* Note that PAGE_TO_ADDR(0) == 0 if ARRAY_BROKEN is not defined...
*/
#define OBJ_TO_PPADDR(obj) ((gcptr_t)POINTER(obj) & pp_mask)
#define PTR_TO_PPADDR(ptr) ((gcptr_t)(ptr) & pp_mask)
#define ADDR_TO_PAGE(addr) ((((addr) & HEAPPAGEMASK) / PAGEBYTES) - pagebase)
#define PAGE_TO_ADDR(page) (((page) + pagebase) * PAGEBYTES)
#define PHYSPAGE(page) ((((page) + pagebase) * PAGEBYTES) & pp_mask)
#define UNALLOCATED_PAGE (gcspace_t)(-2)
#define FREE_PAGE 1
#define OBJECTPAGE 0
#define CONTPAGE 1
#define PERCENT(x, y) (((x) * 100) / (y))
#define HEAPPERCENT(x) PERCENT(x, logical_pages)
#define IS_CLUSTER(a,b) (SAME_PHYSPAGE (PAGE_TO_ADDR ((a)), \
PAGE_TO_ADDR ((b))) || \
(space[a] == space[b] && \
type[(a)&hp_per_pp_mask] == OBJECTPAGE && \
type[((b)&hp_per_pp_mask)+hp_per_pp] == OBJECTPAGE))
/* check whether the (physical) page starting at address addr is protected
* or not. SET_PROTECT and SET_UNPROTECT are used to set or clear the flag
* for the page starting at address addr in the pmap array. The job of
* protecting a page (by calling mprotect) is done in PROTECT/UNPROTECT.
*/
#define PMAP(addr) pmap[((addr) - PAGE_TO_ADDR(0)) >> pp_shift]
#define IS_PROTECTED(addr) ( PMAP (addr) )
#define SET_PROTECT(addr) { PMAP (addr) = 1; protected_pages++; }
#define SET_UNPROTECT(addr) { PMAP (addr) = 0; protected_pages--; }
#if defined(MPROTECT_SIG) || defined(MPROTECT_MMAP)
# ifndef PROT_RW
# define PROT_RW (PROT_READ | PROT_WRITE)
# endif
# ifndef PROT_NONE
# define PROT_NONE 0
# endif
# define MPROTECT(addr,len,prot) { if (inc_collection) \
mprotect ((caddr_t)(addr), (len), \
(prot)); }
#else
# define PROT_RW
# define PROT_NONE
# define MPROTECT(addr,len,prot)
#endif
#define PROTECT(addr) { if (!IS_PROTECTED (addr)) { \
if (!scanning) { \
SET_PROTECT (addr); \
MPROTECT ((addr), bytes_per_pp, PROT_NONE); \
} else \
AddDirty ((addr)); \
} }
#define UNPROTECT(addr) { if (IS_PROTECTED (addr)) { \
SET_UNPROTECT (addr); \
MPROTECT ((addr), bytes_per_pp, PROT_RW); \
} }
/*****************************************************************************/
/* the following functions maintain a linked list to remember pages that
* are "endangered" while scanning goes on. The list elements are arrays,
* each one containing some page addresses. If an array is filled, a new
* one is appended to the list (dynamically).
* An address is not added to the list if the most recently added entry
* is the same address. It is not necessary to add an address if it is in
* the list anywhere, but searching would be too time-consuming.
*/
static void SetupDirtyList () {
dirtylist = (struct dirty_rec *) malloc (sizeof (struct dirty_rec));
if (dirtylist == (struct dirty_rec *)0)
Fatal_Error ("SetupDirtyList: unable to allocate memory");
memset (dirtylist->pages, 0, sizeof (dirtylist->pages));
dirtylist->next = (struct dirty_rec *)0;
dirtyhead = dirtylist;
dirtyentries = 0;
}
static void AddDirty (pageno_t addr) {
struct dirty_rec *p;
if (dirtyentries != 0 &&
dirtylist->pages[(dirtyentries-1) % DIRTYENTRIES] == addr)
return;
else
dirtylist->pages[dirtyentries++ % DIRTYENTRIES] = addr;
if (dirtyentries % DIRTYENTRIES == 0) {
p = (struct dirty_rec *) malloc (sizeof (struct dirty_rec));
if (p == (struct dirty_rec *)0)
Fatal_Error ("AddDirty: unable to allocate memory");
memset (p->pages, 0, sizeof (p->pages));
p->next = (struct dirty_rec *)0;
dirtylist->next = p;
dirtylist = p;
}
}
static void ReprotectDirty () {
int i;
dirtylist = dirtyhead;
while (dirtylist) {
for (i = 0; i < DIRTYENTRIES && dirtyentries--; i++)
PROTECT (dirtylist->pages[i]);
dirtylist = dirtylist->next;
}
dirtyentries = 0;
dirtylist = dirtyhead;
dirtylist->next = (struct dirty_rec *)0;
}
/* register a page which has been promoted into the scan region by the
* Visit function. If that page has not been scanned yet, return, else
* remember the page to be scanned later. If there is not enough space
* to remember pages, set a flag to rescan the whole scan region.
*/
static void RegisterPage (pageno_t page) {
if (allscan)
return;
if (IS_SCANNED (PAGE_TO_ADDR (page))) {
if (rescanpages < MAXRESCAN)
rescan[rescanpages++] = page;
else
allscan = 1;
}
}
/* determine a physical page cluster. Search backward until the beginning
* of the cluster is found, then forward until the length of the cluster
* is determined. The first parameter is the address of the first physical
* page in the cluster, the second one is the length in physical pages.
* Note that these parameters are value-result parameters !
*/
static void DetermineCluster (gcptr_t *addr, int *len) {
gcptr_t addr1;
*len = 1;
while (type[ADDR_TO_PAGE (*addr)] != OBJECTPAGE) {
*addr -= bytes_per_pp;
(*len)++;
}
addr1 = *addr + ((*len) << pp_shift);
while (ADDR_TO_PAGE(addr1) <= lastpage &&
space[ADDR_TO_PAGE(addr1)] > 0 &&
type[ADDR_TO_PAGE(addr1)] != OBJECTPAGE) {
addr1 += bytes_per_pp;
(*len)++;
}
}
/* the following two functions are used to protect or unprotect a page
* cluster. The first parameter is the address of the first page of the
* cluster, the second one is the length in physical pages. If the length
* is 0, DetermineCluster is called to set length accordingly.
*/
static void ProtectCluster (gcptr_t addr, unsigned int len) {
if (!len) DetermineCluster (&addr, &len);
if (len > 1) {
while (len) {
if (!IS_PROTECTED (addr)) {
MPROTECT (addr, len << pp_shift, PROT_NONE);
break;
}
len--;
addr += bytes_per_pp;
}
while (len--) {
if (!IS_PROTECTED (addr)) SET_PROTECT (addr);
addr += bytes_per_pp;
}
} else {
if (!IS_PROTECTED (addr)) {
MPROTECT (addr, bytes_per_pp, PROT_NONE);
SET_PROTECT (addr);
}
}
}
static void UnprotectCluster (gcptr_t addr, unsigned int len) {
if (!len) DetermineCluster (&addr, &len);
MPROTECT (addr, len << pp_shift, PROT_RW);
while (len--) {
if (IS_PROTECTED (addr)) SET_UNPROTECT (addr);
addr += bytes_per_pp;
}
}
/* add one page to the stable set queue */
static void AddQueue (pageno_t page) {
if (stable_queue != (pageno_t)-1)
linked[stable_tail] = page;
else
stable_queue = page;
linked[page] = (pageno_t)-1;
stable_tail = page;
}
/* the following function promotes all heap pages in the stable set queue
* into current space. After this, there are no more forwarded pages in the
* heap.
*/
static void PromoteStableQueue () {
Object *p;
int pcount, size;
pageno_t start;
while (stable_queue != (pageno_t)-1) {
p = PAGE_TO_OBJ (stable_queue);
#ifdef ALIGN_8BYTE
p++;
#endif
size = HEADER_TO_WORDS (*p);
pcount = NEEDED_PAGES (size);
start = stable_queue;
while (pcount--)
space[start++] = current_space;
stable_queue = linked[stable_queue];
}
current_pages = allocated_pages;
forwarded_pages = 0;
}
/* calculate the logarithm (base 2) for arguments == 2**n
*/
static int Logbase2 (addrarith_t psize) {
int shift = 0;
#if LONG_BITS-64 == 0
if (psize & 0xffffffff00000000) shift += 32;
if (psize & 0xffff0000ffff0000) shift += 16;
if (psize & 0xff00ff00ff00ff00) shift += 8;
if (psize & 0xf0f0f0f0f0f0f0f0) shift += 4;
if (psize & 0xcccccccccccccccc) shift += 2;
if (psize & 0xaaaaaaaaaaaaaaaa) shift += 1;
#else
if (psize & 0xffff0000) shift += 16;
if (psize & 0xff00ff00) shift += 8;
if (psize & 0xf0f0f0f0) shift += 4;
if (psize & 0xcccccccc) shift += 2;
if (psize & 0xaaaaaaaa) shift += 1;
#endif
return (shift);
}
/* return next heap page number, wrap around at the end of the heap. */
static pageno_t next (pageno_t page) {
return ((page < lastpage) ? page+1 : firstpage);
}
/*****************************************************************************/
#ifdef MPROTECT_MMAP
static char *heapmalloc (int s) {
char *ret = mmap (0, s, PROT_READ|PROT_WRITE, MAP_ANON, -1, 0);
if (ret == (char*)-1)
ret = 0;
return ret;
}
#else
# define heapmalloc(size) (char *)malloc ((size))
#endif
/*
* make a heap of size kilobytes. It is divided into heappages of
* PAGEBYTES byte and is aligned at a physical page boundary. The
* heapsize is rounded up to the nearest multiple of the physical
* pagesize. Checked by sam@zoy.org on Apr 1, 2003.
*/
void Make_Heap (int size) {
addrarith_t heapsize = size * 2 * 1024;
char *heap_ptr, *aligned_heap_ptr;
Object heap_obj;
pageno_t i;
#if defined(MPROTECT_SIG) || defined(MPROTECT_MMAP)
InstallHandler ();
#endif
/* calculate number of logical heappages and of used physical pages.
* First, round up to the nearest multiple of the physical pagesize,
* then calculate the resulting number of heap pages.
*/
#if defined(SC_PAGESIZE_IN_UNISTD_H)
if ((bytes_per_pp = sysconf (_SC_PAGESIZE)) == -1)
Fatal_Error ("sysconf(_SC_PAGESIZE) failed; can't get pagesize");
#elif defined(HAVE_GETPAGESIZE)
bytes_per_pp = getpagesize ();
#elif defined(MPROTECT_SIG) || defined(MPROTECT_MMAP)
# error "mprotect requires getpagesize or sysconf_pagesize"
#else
bytes_per_pp = 4096;
#endif
physical_pages = (heapsize+bytes_per_pp-1)/bytes_per_pp;
hp_per_pp = bytes_per_pp / PAGEBYTES;
hp_per_pp_mask = ~(hp_per_pp - 1);
logical_pages = spanning_pages = physical_pages * hp_per_pp;
pp_mask = ~(bytes_per_pp-1);
pp_shift = Logbase2 (bytes_per_pp);
heap_ptr = heapmalloc (logical_pages*PAGEBYTES+bytes_per_pp-1);
/* FIXME: add heap_ptr to a list of pointers to free */
saved_heap_ptr = heap_ptr;
if (heap_ptr == NULL)
Fatal_Error ("cannot allocate heap (%u KBytes)", size);
/* Align heap at a memory page boundary */
if ((gcptr_t)heap_ptr & (bytes_per_pp-1))
aligned_heap_ptr = (char*)(((gcptr_t)heap_ptr+bytes_per_pp-1)
& ~(bytes_per_pp-1));
else
aligned_heap_ptr = heap_ptr;
SET(heap_obj, 0, (intptr_t)aligned_heap_ptr);
#ifdef ARRAY_BROKEN
pagebase = ((gcptr_t)POINTER (heap_obj)) / PAGEBYTES;
#endif
firstpage = OBJ_TO_PAGE (heap_obj);
lastpage = firstpage+logical_pages-1;
space = (gcspace_t *)malloc (logical_pages*sizeof (gcspace_t));
type = (gcspace_t *)malloc ((logical_pages + 1)*sizeof (gcspace_t));
pmap = (gcspace_t *)malloc (physical_pages*sizeof (gcspace_t));
linked = (pageno_t *)malloc (logical_pages*sizeof (pageno_t));
if (!space || !type || !pmap || !linked) {
free (heap_ptr);
if (space) free ((char*)space);
if (type) free ((char*)type);
if (pmap) free ((char*)pmap);
if (linked) free ((char*)linked);
Fatal_Error ("cannot allocate heap maps");
}
memset (type, 0, (logical_pages + 1)*sizeof (gcspace_t));
memset (pmap, 0, physical_pages*sizeof (gcspace_t));
memset (linked, 0, logical_pages*sizeof (unsigned int));
space -= firstpage; /* to index the arrays with the heap page number */
type -= firstpage;
type[lastpage+1] = OBJECTPAGE;
linked -= firstpage;
#ifndef ARRAY_BROKEN
pmap -= (PAGE_TO_ADDR (firstpage) >> pp_shift);
#endif
for (i = firstpage; i <= lastpage; i++)
space[i] = FREE_PAGE;
allocated_pages = 0;
forwarded_pages = 0;
current_pages = 0;
protected_pages = 0;
stable_queue = (pageno_t)-1;
SetupDirtyList ();
current_space = forward_space = previous_space = 3;
current_freepage = firstpage; current_free = 0;
}
/*
* increment the heap by 1024 KB. Checked by sam@zoy.org on Apr 1, 2003.
*/
static int ExpandHeap (char *reason) {
int increment = (1024 * 1024 + bytes_per_pp - 1) / bytes_per_pp;
int incpages = increment * hp_per_pp;
addrarith_t heapinc = incpages * PAGEBYTES;
pageno_t new_first, inc_first;
pageno_t new_last, inc_last;
pageno_t new_logpages, new_physpages;
pageno_t new_spanpages;
gcptr_t addr;
gcspace_t *new_space, *new_type, *new_pmap;
pageno_t *new_link, i;
char *heap_ptr, *aligned_heap_ptr;
Object heap_obj;
#ifdef ARRAY_BROKEN
pageno_t new_pagebase, offset;
pageno_t new_firstpage, new_lastpage;
#else
# define offset 0
#endif
/* FIXME: this pointer is lost */
heap_ptr = heapmalloc (heapinc+bytes_per_pp/*-1*/);
if (heap_ptr == NULL) {
if (Var_Is_True (V_Garbage_Collect_Notifyp)) {
char buf[243];
sprintf(buf, "[Heap expansion failed (%s)]~%%", reason);
Format (Standard_Output_Port, buf,
strlen(buf), 0, (Object *)0);
(void)fflush (stdout);
}
return (0);
}
/* Align heap at a memory page boundary */
if ((gcptr_t)heap_ptr & (bytes_per_pp-1))
aligned_heap_ptr = (char*)(((gcptr_t)heap_ptr+bytes_per_pp-1)
& ~(bytes_per_pp-1));
else
aligned_heap_ptr = heap_ptr;
SET(heap_obj, 0, (intptr_t)aligned_heap_ptr);
new_first = firstpage;
new_last = lastpage;
#ifdef ARRAY_BROKEN
new_pagebase = ((gcptr_t)POINTER (heap_obj)) / PAGEBYTES;
inc_first = 0; /* = OBJ_TO_PAGE (heap_obj) - new_pagebase */
new_firstpage = (pagebase > new_pagebase)
? new_pagebase : pagebase;
new_lastpage = (pagebase > new_pagebase)
? pagebase + lastpage
: new_pagebase + incpages - 1;
offset = pagebase - new_firstpage;
#else
inc_first = OBJ_TO_PAGE (heap_obj);
#endif
inc_last = inc_first+incpages-1;
if (inc_last > lastpage)
new_last = inc_last;
if (inc_first < firstpage)
new_first = inc_first;
new_logpages = logical_pages+incpages;
#ifdef ARRAY_BROKEN
new_spanpages = new_lastpage-new_firstpage+1;
new_last = new_spanpages-1;
#else
new_spanpages = new_last-new_first+1;
#endif
new_physpages = new_spanpages / hp_per_pp;
new_space = (gcspace_t *)malloc (new_spanpages*sizeof (gcspace_t));
new_type = (gcspace_t *)malloc ((new_spanpages + 1)*sizeof (gcspace_t));
new_pmap = (gcspace_t *)malloc (new_physpages*sizeof (gcspace_t));
new_link = (pageno_t *)malloc (new_spanpages*sizeof (pageno_t));
if (!new_space || !new_type || !new_pmap || !new_link) {
free (heap_ptr);
if (new_space) free ((char*)new_space);
if (new_type) free ((char*)new_type);
if (new_pmap) free ((char*)new_pmap);
if (new_link) free ((char*)new_link);
if (Var_Is_True (V_Garbage_Collect_Notifyp)) {
Format (Standard_Output_Port, "[Heap expansion failed]~%",
25, 0, (Object *)0);
(void)fflush (stdout);
}
return (0);
}
/* new_first will be 0 if ARRAY_BROKEN is defined. */
new_space -= new_first;
new_type -= new_first;
new_link -= new_first;
memset (new_pmap, 0, new_physpages * sizeof (gcspace_t));
#ifndef ARRAY_BROKEN
new_pmap -= (PHYSPAGE (new_first) >> pp_shift);
#endif
memset (new_type+inc_first+offset, 0, (incpages+1)*sizeof (gcspace_t));
memset (new_link+inc_first+offset, 0, incpages*sizeof (unsigned int));
/* FIXME: memmove! */
for (i = firstpage; i <= lastpage; i++) {
new_link[i + offset] = linked[i] + offset;
new_type[i + offset] = type[i];
}
for (addr = PAGE_TO_ADDR (firstpage); addr <= PAGE_TO_ADDR (lastpage);
addr += bytes_per_pp) {
new_pmap[((addr - PAGE_TO_ADDR(0)) >> pp_shift) + offset] =
IS_PROTECTED (addr);
}
#ifdef ARRAY_BROKEN
for (i = 0; i < new_spanpages; i++) new_space[i] = UNALLOCATED_PAGE;
for (i = firstpage; i <= lastpage; i++) new_space[i+offset] = space[i];
offset = offset ? 0 : new_pagebase - pagebase;
for (i = offset; i <= offset + inc_last; i++) new_space[i] = FREE_PAGE;
new_type[new_spanpages] = OBJECTPAGE;
#else
for (i = new_first; i < firstpage; i++) new_space[i] = UNALLOCATED_PAGE;
for (i = firstpage; i <= lastpage; i++) new_space[i] = space[i];
for (i = lastpage+1; i <= new_last; i++) new_space[i] = UNALLOCATED_PAGE;
for (i = inc_first; i <= inc_last; i++) new_space[i] = FREE_PAGE;
new_type[new_last+1] = OBJECTPAGE;
#endif
current_freepage += offset;
forward_freepage += offset;
last_forward_freepage += offset;
free ((char*)(linked+firstpage));
free ((char*)(type+firstpage));
free ((char*)(space+firstpage));
#ifndef ARRAY_BROKEN
free ((char*)(pmap+(PAGE_TO_ADDR (firstpage) >> pp_shift)));
#else
free ((char*)pmap);
#endif
linked = new_link;
type = new_type;
space = new_space;
pmap = new_pmap;
firstpage = new_first;
lastpage = new_last;
logical_pages = new_logpages;
spanning_pages = new_spanpages;
physical_pages = new_physpages;
if (Var_Is_True (V_Garbage_Collect_Notifyp)) {
int a = (logical_pages * PAGEBYTES) >> 10;
char buf[243];
sprintf(buf, "[Heap expanded to %dK (%s)]~%%", a, reason);
Format (Standard_Output_Port, buf, strlen(buf), 0, (Object *)0);
(void)fflush (stdout);
}
return (1);
}
/*
* free the heap.
*/
void Free_Heap () {
free (saved_heap_ptr);
free ((char*)(linked+firstpage));
free ((char*)(type+firstpage));
free ((char*)(space+firstpage));
#ifndef ARRAY_BROKEN
free ((char*)(pmap+(PAGE_TO_ADDR (firstpage) >> pp_shift)));
#else
free ((char*)pmap);
#endif
}
/* allocate new logical heappages. npg is the number of pages to allocate.
* If there is not enough space left, the heap will be expanded if possible.
* The new page is allocated in current space.
*/
static int ProtectedInRegion (pageno_t start, pageno_t npages) {
gcptr_t beginpage = PHYSPAGE (start);
gcptr_t endpage = PHYSPAGE (start+npages-1);
do {
if (IS_PROTECTED (beginpage))
return (1);
beginpage += bytes_per_pp;
} while (beginpage <= endpage);
return (0);
}
static void AllocPage (pageno_t npg) {
pageno_t first_freepage = 0;/* first free heap page */
pageno_t cont_free; /* contiguous free pages */
pageno_t n, p;
if (current_space != forward_space) {
(void)Scanner ((pageno_t)1);
if (!protected_pages)
TerminateGC ();
} else {
if (inc_collection) {
if (allocated_pages+npg >= logical_pages/3)
P_Collect_Incremental ();
} else {
if (allocated_pages+npg >= logical_pages/2)
P_Collect ();
}
}
/* now look for a cluster of npg free pages. cont_free counts the
* number of free pages found, first_freepage is the number of the
* first free heap page in the cluster. */
for (p = spanning_pages, cont_free = 0; p; p--) {
/* If we have more space than before, or if the current page is
* stable, start again with the next page. */
if (space[current_freepage] >= previous_space
|| STABLE (current_freepage)) {
current_freepage = next (current_freepage);
cont_free = 0;
continue;
}
if (cont_free == 0) {
/* This is our first free page, first check that we have a
* continuous cluster of pages (we'll check later that they
* are free). Otherwise, go to the next free page. */
if ((current_freepage+npg-1) > lastpage
|| !IS_CLUSTER (current_freepage, current_freepage+npg-1)) {
current_freepage = next ((current_freepage&hp_per_pp_mask)
+hp_per_pp-1);
continue;
}
first_freepage = current_freepage;
}
cont_free++;
if (cont_free == npg) {
space[first_freepage] = current_space;
type[first_freepage] = OBJECTPAGE;
for (n = 1; n < npg; n++) {
space[first_freepage+n] = current_space;
type[first_freepage+n] = CONTPAGE;
}
current_freep = PAGE_TO_OBJ (first_freepage);
current_free = npg*PAGEWORDS;
current_pages += npg;
allocated_pages += npg;
current_freepage = next (first_freepage+npg-1);
if (ProtectedInRegion (first_freepage, npg))
(void)ScanCluster (PHYSPAGE (first_freepage));
return;
}
/* check the next free page. If we warped, reset cont_free to 0. */
current_freepage = next (current_freepage);
if (current_freepage == firstpage) cont_free = 0;
}
/* no space available, try to expand heap */
if (ExpandHeap ("to allocate new object")) {
AllocPage (npg);
return;
}
Fatal_Error ("unable to allocate %lu bytes in heap", npg*PAGEBYTES);
/*NOTREACHED*/
}
/* allocate an object in the heap. size is the size of the new object
* in bytes, type describes the object's type (see object.h), and konst
* determines whether the object is immutable.
*/
Object Alloc_Object (size, type, konst) {
Object obj;
register addrarith_t s = /* size in words */
((size + sizeof(Object) - 1) / sizeof(Object)) + 1;
int big = 0;
if (GC_Debug) {
if (inc_collection)
P_Collect_Incremental ();
else
P_Collect ();
}
/* if there is not enough space left on the current page, discard
* the left space and allocate a new page. Space is discarded by
* writing a T_Freespace object.
*/
if (s > current_free) {
if (current_free) {
MAKE_HEADER (*current_freep, current_free, T_Freespace);
current_free = 0;
}
/* If we are about to allocate an object bigger than one heap page,
* set a flag. The space behind big objects is discarded, see below.
*/
#ifdef ALIGN_8BYTE
if (s < PAGEWORDS-1)
AllocPage ((pageno_t)1);
else {
AllocPage ((pageno_t)(s+PAGEWORDS)/PAGEWORDS);
big = 1;
}
MAKE_HEADER (*current_freep, 1, T_Align_8Byte);
current_freep++;
current_free--;
#else
if (s < PAGEWORDS)
AllocPage ((pageno_t)1);
else {
AllocPage ((pageno_t)(s+PAGEWORDS-1)/PAGEWORDS);
big = 1;
}
#endif
}
/* now write a header for the object into the heap and update the
* pointer to the next free location and the counter of free words
* in the current heappage.
*/
MAKE_HEADER (*current_freep, s, type);
current_freep++;
*current_freep = Null;
SET (obj, type, (intptr_t)current_freep);
if (big)
current_freep = (Object*)0, current_free = 0;
else
current_freep += (s-1), current_free -= s;
#ifdef ALIGN_8BYTE
if (!((gcptr_t)current_freep & 7) && current_free) {
MAKE_HEADER (*current_freep, 1, T_Align_8Byte);
current_freep++;
current_free--;
}
#endif
if (type == T_Control_Point)
CONTROL(obj)->reloc = 0;
if (konst) SETCONST (obj);
return (obj);
}
/* allocate a page in forward space. If there is no space left, the heap
* is expanded. The argument prevents allocation of a heap page which lies
* on the same physical page the referenced object lies on.
*/
static void AllocForwardPage (Object bad) {
Object *badaddr = (Object *)POINTER (bad);
pageno_t whole_heap = spanning_pages;
pageno_t tpage;
while (whole_heap--) {
if (space[forward_freepage] < previous_space
&& !STABLE (forward_freepage)
&& !SAME_PHYSPAGE ((gcptr_t)badaddr,
PAGE_TO_ADDR (forward_freepage))
&& !IN_SCANREGION (PAGE_TO_ADDR (forward_freepage))) {
allocated_pages++;
forwarded_pages++;
space[forward_freepage] = forward_space;
type[forward_freepage] = OBJECTPAGE;
forward_freep = PAGE_TO_OBJ (forward_freepage);
forward_free = PAGEWORDS;
AddQueue (forward_freepage);
tpage = last_forward_freepage;
last_forward_freepage = next (forward_freepage);
forward_freepage = tpage;
return;
} else {
forward_freepage = next (forward_freepage);
}
}
if (ExpandHeap ("to allocate forward page")) {
AllocForwardPage (bad);
return;
}
Fatal_Error ("unable to allocate forward page in %lu KBytes heap",
(logical_pages * PAGEBYTES) >> 10);
/*NOTREACHED*/
}
/* Visit an object and move it into forward space. The forwarded
* object must be protected because it is to be scanned later.
*/
int Visit (register Object *cp) {
register pageno_t page = OBJ_TO_PAGE (*cp);
register Object *obj_ptr = (Object *)POINTER (*cp);
int tag = TYPE (*cp);
int konst = ISCONST (*cp);
addrarith_t objwords;
pageno_t objpages, pcount;
gcptr_t ffreep, pageaddr = 0;
int outside;
/* if the Visit function is called via the REVIVE_OBJ macro and we are
* not inside an incremental collection, exit immediately.
*/
if (current_space == forward_space)
return 0;
if (page < firstpage || page > lastpage || STABLE (page)
|| space[page] == current_space || space[page] == UNALLOCATED_PAGE
|| !Types[tag].haspointer)
return 0;
if (space[page] != previous_space) {
char buf[100];
sprintf (buf, "Visit: object not in prev space at %p ('%s') %d %d",
obj_ptr, Types[tag].name, space[page], previous_space);
Panic (buf);
}
if (!IN_SCANREGION (obj_ptr) && IS_PROTECTED ((gcptr_t)obj_ptr)) {
pageaddr = OBJ_TO_PPADDR (*cp);
UNPROTECT (pageaddr);
}
if (WAS_FORWARDED (*cp)) {
if (pageaddr != 0)
PROTECT (pageaddr);
MAKEOBJ (*cp, tag, (intptr_t)POINTER(*obj_ptr));
if (konst)
SETCONST (*cp);
return 0;
}
ffreep = PTR_TO_PPADDR (forward_freep);
outside = !IN_SCANREGION (forward_freep);
objwords = HEADER_TO_WORDS (*(obj_ptr - 1));
if (objwords >= forward_free) {
#ifdef ALIGN_8BYTE
if (objwords >= PAGEWORDS - 1) {
objpages = (objwords + PAGEWORDS) / PAGEWORDS;
#else
if (objwords >= PAGEWORDS) {
objpages = (objwords + PAGEWORDS - 1) / PAGEWORDS;
#endif
forwarded_pages += objpages;
for (pcount = 0; pcount < objpages; pcount++)
space[page + pcount] = forward_space;
AddQueue (page);
if (IN_SCANREGION (PAGE_TO_ADDR (page)))
RegisterPage (page);
else
ProtectCluster (PHYSPAGE (page), 0);
if (pageaddr != 0)
PROTECT (pageaddr);
return 0;
}
if (forward_free) {
if (outside && IS_PROTECTED (ffreep)
&& !SAME_PHYSPAGE ((gcptr_t)obj_ptr, ffreep)) {
UNPROTECT (ffreep);
MAKE_HEADER (*forward_freep, forward_free, T_Freespace);
forward_free = 0;
PROTECT (ffreep);
} else {
MAKE_HEADER (*forward_freep, forward_free, T_Freespace);
forward_free = 0;
}
}
AllocForwardPage (*cp);
outside = !IN_SCANREGION (forward_freep);
ffreep = PTR_TO_PPADDR (forward_freep); /* re-set ffreep ! */
#ifdef ALIGN_8BYTE
if (outside && IS_PROTECTED (ffreep))
UNPROTECT (ffreep);
MAKE_HEADER (*forward_freep, 1, T_Align_8Byte);
forward_freep++;
forward_free--;
goto do_forward;
#endif
}
if (outside && IS_PROTECTED (ffreep))
UNPROTECT (ffreep);
#ifdef ALIGN_8BYTE
do_forward:
#endif
if (tag == T_Control_Point) {
CONTROL (*cp)->reloc =
(char*)(forward_freep + 1) - (char*)obj_ptr;
}
MAKE_HEADER (*forward_freep, objwords, tag);
forward_freep++;
memcpy (forward_freep, obj_ptr, (objwords-1)*sizeof(Object));
SET (*obj_ptr, T_Broken_Heart, (intptr_t)forward_freep);
MAKEOBJ (*cp, tag, (intptr_t)forward_freep);
if (konst)
SETCONST (*cp);
forward_freep += (objwords - 1);
forward_free -= objwords;
#ifdef ALIGN_8BYTE
if (!((gcptr_t)forward_freep & 7) && forward_free) {
MAKE_HEADER (*forward_freep, 1, T_Align_8Byte);
forward_freep++;
forward_free--;
}
#endif
if (outside)
PROTECT (ffreep);
if (pageaddr != 0)
PROTECT (pageaddr);
return 0;
}
/* Scan a page and visit all objects referenced by objects lying on the
* page. This will possibly forward the referenced objects.
*/
static void ScanPage (Object *currentp, Object *nextcp) {
Object *cp = currentp, obj;
addrarith_t len, m, n;
int t;
while (cp < nextcp && (cp != forward_freep || forward_free == 0)) {
t = HEADER_TO_TYPE (*cp);
len = HEADER_TO_WORDS (*cp);
cp++;
/* cp now points to the real Scheme object in the heap. t denotes
* the type of the object, len its length inclusive header in
* words.
*/
SET(obj, t, (intptr_t)cp);
switch (t) {
case T_Symbol:
Visit (&SYMBOL(obj)->next);
Visit (&SYMBOL(obj)->name);
Visit (&SYMBOL(obj)->value);
Visit (&SYMBOL(obj)->plist);
break;
case T_Pair:
case T_Environment:
Visit (&PAIR(obj)->car);
Visit (&PAIR(obj)->cdr);
break;
case T_Vector:
for (n = 0, m = VECTOR(obj)->size; n < m; n++ )
Visit (&VECTOR(obj)->data[n]);
break;
case T_Compound:
Visit (&COMPOUND(obj)->closure);
Visit (&COMPOUND(obj)->env);
Visit (&COMPOUND(obj)->name);
break;
case T_Control_Point:
(CONTROL(obj)->delta) += CONTROL(obj)->reloc;
#ifdef HAVE_ALLOCA
Visit_GC_List (CONTROL(obj)->gclist, CONTROL(obj)->delta);
#else
Visit (&CONTROL(obj)->gcsave);
#endif
Visit_Wind (CONTROL(obj)->firstwind,
(CONTROL(obj)->delta) );
Visit (&CONTROL(obj)->env);
break;
case T_Promise:
Visit (&PROMISE(obj)->env);
Visit (&PROMISE(obj)->thunk);
break;
case T_Port:
Visit (&PORT(obj)->name);
break;
case T_Autoload:
Visit (&AUTOLOAD(obj)->files);
Visit (&AUTOLOAD(obj)->env);
break;
case T_Macro:
Visit (&MACRO(obj)->body);
Visit (&MACRO(obj)->name);
break;
default:
if (Types[t].visit)
(Types[t].visit) (&obj, Visit);
}
cp += (len - 1);
}
}
/* rescan all pages remembered by the RegisterPage function. */
static void RescanPages () {
register Object *cp;
register int i;
int pages = rescanpages;
rescanpages = 0;
for (i = 0; i < pages; i++) {
cp = PAGE_TO_OBJ (rescan[i]);
#ifdef ALIGN_8BYTE
ScanPage (cp + 1, cp + PAGEWORDS);
#else
ScanPage (cp, cp + PAGEWORDS);
#endif
}
}
static int ScanCluster (gcptr_t addr) {
register pageno_t page, lastpage;
pageno_t npages;
int n = 0;
scanning = 1;
DetermineCluster (&addr, &n);
npages = n;
scanfirst = (Object *)addr;
scanlast = (Object *)(addr + (npages << pp_shift) - sizeof (Object));
UnprotectCluster ((gcptr_t)scanfirst, (int)npages);
rescan_cluster:
lastpage = ADDR_TO_PAGE ((gcptr_t)scanlast);
for (page = ADDR_TO_PAGE ((gcptr_t)scanfirst); page <= lastpage; page++) {
if (STABLE (page) && type[page] == OBJECTPAGE) {
scanpointer = PAGE_TO_OBJ (page);
#ifdef ALIGN_8BYTE
ScanPage (scanpointer + 1, scanpointer + PAGEWORDS);
#else
ScanPage (scanpointer, scanpointer + PAGEWORDS);
#endif
}
}
while (rescanpages) {
if (allscan) {
allscan = 0;
goto rescan_cluster;
} else
RescanPages ();
}
scanfirst = (Object *)0;
scanlast = (Object *)0;
scanning = 0;
ReprotectDirty ();
return (npages); /* return number of scanned pages */
}
static int Scanner (pageno_t npages) {
register gcptr_t addr, lastaddr;
pageno_t spages;
pageno_t scanned = 0;
while (npages > 0 && protected_pages) {
lastaddr = PAGE_TO_ADDR (lastpage);
for (addr = PAGE_TO_ADDR(firstpage); addr < lastaddr && npages > 0;
addr += bytes_per_pp) {
if (IS_PROTECTED (addr)) {
if (space[ADDR_TO_PAGE (addr)] == UNALLOCATED_PAGE)
Panic ("Scanner: found incorrect heap page");
spages = ScanCluster (addr);
scanned += spages;
npages -= spages;
}
}
}
scanfirst = (Object *)0;
scanlast = scanfirst;
return (scanned);
}
#if defined(MPROTECT_SIG) || defined(MPROTECT_MMAP)
/* the following function handles a page fault. If the fault was caused
* by the mutator and incremental collection is enabled, this will result
* in scanning the physical page the fault occured on.
*/
#ifdef SIGSEGV_SIGCONTEXT
static void PagefaultHandler (int sig, int code, struct sigcontext *scp) {
char *addr = (char *)(scp->sc_badvaddr);
#else
#ifdef SIGSEGV_AIX
static void PagefaultHandler (int sig, int code, struct sigcontext *scp) {
char *addr = (char *)scp->sc_jmpbuf.jmp_context.except[3];
/*
* Or should that be .jmp_context.o_vaddr?
*/
#else
#ifdef SIGSEGV_SIGINFO
static void PagefaultHandler (int sig, siginfo_t *sip, ucontext_t *ucp) {
char *addr;
#else
#ifdef SIGSEGV_ARG4
static void PagefaultHandler (int sig, int code, struct sigcontext *scp,
char *addr) {
#else
#ifdef SIGSEGV_HPUX
static void PagefaultHandler (int sig, int code, struct sigcontext *scp) {
#else
# include "HAVE_MPROTECT defined, but missing SIGSEGV_xxx"
#endif
#endif
#endif
#endif
#endif
pageno_t page;
gcptr_t ppage;
char *errmsg = 0;
#ifdef SIGSEGV_AIX
if ((char *)scp->sc_jmpbuf.jmp_context.except[0] != addr)
Panic ("except");
#endif
#ifdef SIGSEGV_SIGINFO
if (sip == 0)
Fatal_Error ("SIGSEGV handler got called with zero siginfo_t");
addr = sip->si_addr;
#endif
#ifdef SIGSEGV_HPUX
char *addr;
if (scp == 0)
Fatal_Error ("SIGSEGV handler got called with zero sigcontext");
addr = (char *)scp->sc_sl.sl_ss.ss_cr21;
#endif
ppage = PTR_TO_PPADDR(addr);
page = ADDR_TO_PAGE((gcptr_t)addr);
if (!inc_collection)
errmsg = "SIGSEGV signal received";
else if (current_space == forward_space)
errmsg = "SIGSEGV signal received while not garbage collecting";
else if (page < firstpage || page > lastpage)
errmsg = "SIGSEV signal received; address outside of heap";
if (errmsg) {
fprintf (stderr, "\n[%s]\n", errmsg);
abort ();
}
GC_In_Progress = 1;
(void)ScanCluster (ppage);
GC_In_Progress = 0;
#ifdef SIGSEGV_AIX
InstallHandler ();
#endif
return;
}
void InstallHandler () {
#ifdef SIGSEGV_SIGINFO
struct sigaction sact;
sigset_t mask;
sact.sa_handler = (void (*)())PagefaultHandler;
sigemptyset (&mask);
sact.sa_mask = mask;
sact.sa_flags = SA_SIGINFO;
if (sigaction (SIGSEGV, &sact, 0) == -1) {
perror ("sigaction"); exit (1);
}
#else
(void)signal (SIGSEGV, (void (*)())PagefaultHandler);
#endif
}
#endif
static void TerminateGC () {
int save_force_total;
forward_space = current_space;
previous_space = current_space;
if (protected_pages)
Panic ("TerminateGC: protected pages after collection");
allocated_pages = current_pages + forwarded_pages;
current_pages = 0;
if (forward_free) {
MAKE_HEADER (*forward_freep, forward_free, T_Freespace);
forward_free = 0;
}
forward_freep = (Object *)0;
Call_After_GC();
GC_In_Progress = 0;
Enable_Interrupts;
if (Var_Is_True (V_Garbage_Collect_Notifyp) && !GC_Debug) {
int foo = percent - HEAPPERCENT (allocated_pages);
Object bar;
bar = Make_Integer (foo);
if (!incomplete_msg)
Format (Standard_Output_Port, "[", 1, 0, (Object *)0);
if (foo >= 0)
Format (Standard_Output_Port, "~s% reclaimed]~%", 16, 1, &bar);
else
Format (Standard_Output_Port, "finished]~%", 11, 0, (Object *)0);
(void)fflush (stdout);
incomplete_msg = 0;
}
if (PERCENT (allocated_pages, old_logical_pages) >= tuneable_force_total) {
PromoteStableQueue ();
save_force_total = tuneable_force_total;
tuneable_force_total = 100;
if (inc_collection)
P_Collect_Incremental ();
else
P_Collect ();
tuneable_force_total = save_force_total;
if (HEAPPERCENT (allocated_pages) >= tuneable_newly_expand)
/* return value should not be ignore here: */
(void)ExpandHeap ("after full collection");
}
}
static void Finish_Collection () {
register gcptr_t addr;
do {
for (addr = PAGE_TO_ADDR(firstpage);
addr < PAGE_TO_ADDR(lastpage);
addr += bytes_per_pp) {
if (IS_PROTECTED (addr)) {
(void)ScanCluster (addr);
if (protected_pages == 0) TerminateGC ();
}
}
} while (protected_pages);
return;
}
static void General_Collect (int initiate) {
pageno_t fpage, free_fpages, i;
pageno_t page;
pageno_t fregion_pages;
Object obj;
if (!Interpreter_Initialized)
Fatal_Error ("Out of heap space (increase heap size)");
if (current_space != forward_space && !inc_collection) {
Format (Standard_Output_Port, "GC while GC in progress~%",
25, 0, (Object*)0);
return;
}
/* Call all user-registered functions to be executed just before GC. */
Disable_Interrupts;
GC_In_Progress = 1;
Call_Before_GC();
percent = HEAPPERCENT (allocated_pages);
old_logical_pages = logical_pages;
if (Var_Is_True (V_Garbage_Collect_Notifyp) && !GC_Debug) {
if (initiate) {
Format (Standard_Output_Port, "[Garbage collecting...]~%",
25, 0, (Object *)0);
incomplete_msg = 0;
} else {
Format (Standard_Output_Port, "[Garbage collecting... ",
23, 0, (Object *)0);
incomplete_msg = 1;
}
(void)fflush (stdout);
}
if (GC_Debug) {
printf ("."); (void)fflush (stdout);
}
/* discard any remaining portion of the current heap page */
if (current_free) {
MAKE_HEADER (*current_freep, current_free, T_Freespace);
current_free = 0;
}
/* partition regions for forwarded and newly-allocated objects. Then
* advance the current free pointer so that - if possible - there will
* be RESERVEDPAGES free heap pages in the forward region.
*/
forward_freepage = current_freepage;
last_forward_freepage = forward_freepage;
current_freep = PAGE_TO_OBJ (current_freepage);
forward_freep = current_freep;
fpage = forward_freepage;
free_fpages = 0;
fregion_pages = logical_pages / tuneable_forward_region;
for (i = 0; free_fpages <= fregion_pages && i < spanning_pages; i++) {
if (space[fpage] != current_space && !STABLE (fpage))
free_fpages++;
fpage = next (fpage);
}
current_freep = (Object *)PHYSPAGE (fpage);
SET(obj, 0, (intptr_t)current_freep);
current_freepage = OBJ_TO_PAGE (obj);
/* advance spaces. Then forward all objects directly accessible
* via the global GC lists and the WIND list.
*/
current_pages = 0;
forward_space = current_space + 1;
current_space = current_space + 2;
Visit_GC_List (Global_GC_Obj, 0);
Visit_GC_List (GC_List, 0);
Visit_Wind (First_Wind, 0);
/* If collecting in a non-incremental manner, scan all heap pages which
* have been protected, else check whether to expand the heap because
* the stable set has grown too big.
*/
page = stable_queue;
while (page != (pageno_t)-1) {
ProtectCluster (PHYSPAGE (page), 0);
page = linked[page];
}
if (!initiate) {
Finish_Collection ();
} else
if (HEAPPERCENT (forwarded_pages) > tuneable_force_expand)
/* return value should not be ignored here: */
(void)ExpandHeap ("large stable set");
GC_In_Progress = 0;
return;
}
Object P_Collect_Incremental () {
/* if already collecting, scan a few pages and return */
if (!inc_collection) {
if (current_space == forward_space)
Primitive_Error ("incremental garbage collection not enabled");
else {
inc_collection = 1;
Finish_Collection ();
inc_collection = 0;
return (True);
}
} else {
if (current_space != forward_space) {
(void)Scanner ((pageno_t)1);
GC_In_Progress = 0;
if (protected_pages == 0)
TerminateGC ();
return (protected_pages ? False : True);
} else {
General_Collect (1);
return (False);
}
}
/*NOTREACHED*/
}
Object P_Collect () {
/* Check the inc_collection flag. If an incremental GC is in
* progress and the flag has been changed to false, finish
* the collection.
*/
if (!inc_collection && current_space != forward_space) {
inc_collection = 1;
Finish_Collection ();
inc_collection = 0;
return (Void);
}
if (current_space != forward_space) {
Finish_Collection ();
return (Void);
} else {
General_Collect (0);
return (Void);
}
}
void Generational_GC_Finalize () {
if (current_space != forward_space)
Finish_Collection ();
}
void Generational_GC_Reinitialize () {
#if defined(MPROTECT_SIG) || defined(MPROTECT_MMAP)
InstallHandler ();
#endif
}
Object Internal_GC_Status (int strat, int flags) {
Object list;
#if defined(MPROTECT_SIG) || defined(MPROTECT_MMAP)
Object cell;
#endif
GC_Node;
list = Cons (Sym_Generational_GC, Null);
GC_Link (list);
switch (strat) {
default: /* query or stop-and-copy */
#if defined(MPROTECT_SIG) || defined(MPROTECT_MMAP)
if (inc_collection) {
cell = Cons (Sym_Incremental_GC, Null);
(void)P_Set_Cdr (list, cell);
}
#endif
break;
case GC_STRAT_GEN:
if (flags == GC_FLAGS_INCR) {
#if defined(MPROTECT_SIG) || defined(MPROTECT_MMAP)
inc_collection = 1;
cell = Cons (Sym_Incremental_GC, Null);
(void)P_Set_Cdr (list, cell);
#endif
} else inc_collection = 0;
break;
}
GC_Unlink;
return (list);
}