;; Copyright (C) 1991, 1992, 1993, 1994, 1995, 2000, 2003 Free Software Foundation, Inc. ;; ;; This program is free software; you can redistribute it and/or modify it ;; under the terms of the GNU General Public License as published by the ;; Free Software Foundation; either version 2, or (at your option) any ;; later version. ;; ;; This program is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; ;; To receive a copy of the GNU General Public License, write to the ;; Free Software Foundation, Inc., 59 Temple Place - Suite 330, ;; Boston, MA 02111-1307, USA; or view ;; http://swissnet.ai.mit.edu/~jaffer/GPL.html ;;;; "r4rstest.scm" Test correctness of scheme implementations. ;;; Author: Aubrey Jaffer ;;; This includes examples from ;;; William Clinger and Jonathan Rees, editors. ;;; Revised^4 Report on the Algorithmic Language Scheme ;;; and the IEEE specification. ;;; The input tests read this file expecting it to be named "r4rstest.scm". ;;; Files `tmp1', `tmp2' and `tmp3' will be created in the course of running ;;; these tests. You may need to delete them in order to run ;;; "r4rstest.scm" more than once. ;;; There are three optional tests: ;;; (TEST-CONT) tests multiple returns from call-with-current-continuation ;;; ;;; (TEST-SC4) tests procedures required by R4RS but not by IEEE ;;; ;;; (TEST-DELAY) tests DELAY and FORCE, which are not required by ;;; either standard. ;;; If you are testing a R3RS version which does not have `list?' do: ;;; (define list? #f) ;;; send corrections or additions to agj @ alum.mit.edu (define cur-section '())(define errs '()) (define SECTION (lambda args (display "SECTION") (write args) (newline) (set! cur-section args) #t)) (define record-error (lambda (e) (set! errs (cons (list cur-section e) errs)))) (define test (lambda (expect fun . args) (write (cons fun args)) (display " ==> ") ((lambda (res) (write res) (newline) (cond ((not (equal? expect res)) (record-error (list res expect (cons fun args))) (display " BUT EXPECTED ") (write expect) (newline) #f) (else #t))) (if (procedure? fun) (apply fun args) (car args))))) (define (report-errs) (newline) (if (null? errs) (display "Passed all tests") (begin (display "errors were:") (newline) (display "(SECTION (got expected (call)))") (newline) (for-each (lambda (l) (write l) (newline)) errs))) (newline)) (SECTION 2 1);; test that all symbol characters are supported. '(+ - ... !.. $.+ %.- &.! *.: /:. :+. <-. =. >. ?. ~. _. ^.) (SECTION 3 4) (define disjoint-type-functions (list boolean? char? null? number? pair? procedure? string? symbol? vector?)) (define type-examples (list #t #f #\a '() 9739 '(test) record-error "test" "" 'test '#() '#(a b c) )) (define i 1) (for-each (lambda (x) (display (make-string i #\ )) (set! i (+ 3 i)) (write x) (newline)) disjoint-type-functions) (define type-matrix (map (lambda (x) (let ((t (map (lambda (f) (f x)) disjoint-type-functions))) (write t) (write x) (newline) t)) type-examples)) (set! i 0) (define j 0) (for-each (lambda (x y) (set! j (+ 1 j)) (set! i 0) (for-each (lambda (f) (set! i (+ 1 i)) (cond ((and (= i j)) (cond ((not (f x)) (test #t f x)))) ((f x) (test #f f x))) (cond ((and (= i j)) (cond ((not (f y)) (test #t f y)))) ((f y) (test #f f y)))) disjoint-type-functions)) (list #t #\a '() 9739 '(test) record-error "test" 'car '#(a b c)) (list #f #\newline '() -3252 '(t . t) car "" 'nil '#())) (SECTION 4 1 2) (test '(quote a) 'quote (quote 'a)) (test '(quote a) 'quote ''a) (SECTION 4 1 3) (test 12 (if #f + *) 3 4) (SECTION 4 1 4) (test 8 (lambda (x) (+ x x)) 4) (define reverse-subtract (lambda (x y) (- y x))) (test 3 reverse-subtract 7 10) (define add4 (let ((x 4)) (lambda (y) (+ x y)))) (test 10 add4 6) (test '(3 4 5 6) (lambda x x) 3 4 5 6) (test '(5 6) (lambda (x y . z) z) 3 4 5 6) (SECTION 4 1 5) (test 'yes 'if (if (> 3 2) 'yes 'no)) (test 'no 'if (if (> 2 3) 'yes 'no)) (test '1 'if (if (> 3 2) (- 3 2) (+ 3 2))) (SECTION 4 1 6) (define x 2) (test 3 'define (+ x 1)) (set! x 4) (test 5 'set! (+ x 1)) (SECTION 4 2 1) (test 'greater 'cond (cond ((> 3 2) 'greater) ((< 3 2) 'less))) (test 'equal 'cond (cond ((> 3 3) 'greater) ((< 3 3) 'less) (else 'equal))) (test 2 'cond (cond ((assv 'b '((a 1) (b 2))) => cadr) (else #f))) (test 'composite 'case (case (* 2 3) ((2 3 5 7) 'prime) ((1 4 6 8 9) 'composite))) (test 'consonant 'case (case (car '(c d)) ((a e i o u) 'vowel) ((w y) 'semivowel) (else 'consonant))) (test #t 'and (and (= 2 2) (> 2 1))) (test #f 'and (and (= 2 2) (< 2 1))) (test '(f g) 'and (and 1 2 'c '(f g))) (test #t 'and (and)) (test #t 'or (or (= 2 2) (> 2 1))) (test #t 'or (or (= 2 2) (< 2 1))) (test #f 'or (or #f #f #f)) (test #f 'or (or)) (test '(b c) 'or (or (memq 'b '(a b c)) (+ 3 0))) (SECTION 4 2 2) (test 6 'let (let ((x 2) (y 3)) (* x y))) (test 35 'let (let ((x 2) (y 3)) (let ((x 7) (z (+ x y))) (* z x)))) (test 70 'let* (let ((x 2) (y 3)) (let* ((x 7) (z (+ x y))) (* z x)))) (test #t 'letrec (letrec ((even? (lambda (n) (if (zero? n) #t (odd? (- n 1))))) (odd? (lambda (n) (if (zero? n) #f (even? (- n 1)))))) (even? 88))) (define x 34) (test 5 'let (let ((x 3)) (define x 5) x)) (test 34 'let x) (test 6 'let (let () (define x 6) x)) (test 34 'let x) (test 7 'let* (let* ((x 3)) (define x 7) x)) (test 34 'let* x) (test 8 'let* (let* () (define x 8) x)) (test 34 'let* x) (test 9 'letrec (letrec () (define x 9) x)) (test 34 'letrec x) (test 10 'letrec (letrec ((x 3)) (define x 10) x)) (test 34 'letrec x) (define (s x) (if x (let () (set! s x) (set! x s)))) (SECTION 4 2 3) (define x 0) (test 6 'begin (begin (set! x (begin (begin 5))) (begin ((begin +) (begin x) (begin (begin 1)))))) (SECTION 4 2 4) (test '#(0 1 2 3 4) 'do (do ((vec (make-vector 5)) (i 0 (+ i 1))) ((= i 5) vec) (vector-set! vec i i))) (test 25 'do (let ((x '(1 3 5 7 9))) (do ((x x (cdr x)) (sum 0 (+ sum (car x)))) ((null? x) sum)))) (test 1 'let (let foo () 1)) (test '((6 1 3) (-5 -2)) 'let (let loop ((numbers '(3 -2 1 6 -5)) (nonneg '()) (neg '())) (cond ((null? numbers) (list nonneg neg)) ((negative? (car numbers)) (loop (cdr numbers) nonneg (cons (car numbers) neg))) (else (loop (cdr numbers) (cons (car numbers) nonneg) neg))))) ;;From: Allegro Petrofsky (test -1 'let (let ((f -)) (let f ((n (f 1))) n))) (SECTION 4 2 6) (test '(list 3 4) 'quasiquote `(list ,(+ 1 2) 4)) (test '(list a (quote a)) 'quasiquote (let ((name 'a)) `(list ,name ',name))) (test '(a 3 4 5 6 b) 'quasiquote `(a ,(+ 1 2) ,@(map abs '(4 -5 6)) b)) (test '((foo 7) . cons) 'quasiquote `((foo ,(- 10 3)) ,@(cdr '(c)) . ,(car '(cons)))) ;;; sqt is defined here because not all implementations are required to ;;; support it. (define (sqt x) (do ((i 0 (+ i 1))) ((> (* i i) x) (- i 1)))) (test '#(10 5 2 4 3 8) 'quasiquote `#(10 5 ,(sqt 4) ,@(map sqt '(16 9)) 8)) (test 5 'quasiquote `,(+ 2 3)) (test '(a `(b ,(+ 1 2) ,(foo 4 d) e) f) 'quasiquote `(a `(b ,(+ 1 2) ,(foo ,(+ 1 3) d) e) f)) (test '(a `(b ,x ,'y d) e) 'quasiquote (let ((name1 'x) (name2 'y)) `(a `(b ,,name1 ,',name2 d) e))) (test '(list 3 4) 'quasiquote (quasiquote (list (unquote (+ 1 2)) 4))) (test '`(list ,(+ 1 2) 4) 'quasiquote '(quasiquote (list (unquote (+ 1 2)) 4))) (SECTION 5 2 1) (define add3 (lambda (x) (+ x 3))) (test 6 'define (add3 3)) (define first car) (test 1 'define (first '(1 2))) (define old-+ +) (begin (begin (begin) (begin (begin (begin) (define + (lambda (x y) (list y x))) (begin))) (begin)) (begin) (begin (begin (begin) (test '(3 6) add3 6) (begin)))) (set! + old-+) (test 9 add3 6) (begin) (begin (begin)) (begin (begin (begin (begin)))) (SECTION 5 2 2) (test 45 'define (let ((x 5)) (begin (begin (begin) (begin (begin (begin) (define foo (lambda (y) (bar x y))) (begin))) (begin)) (begin) (begin) (begin (define bar (lambda (a b) (+ (* a b) a)))) (begin)) (begin) (begin (foo (+ x 3))))) (define x 34) (define (foo) (define x 5) x) (test 5 foo) (test 34 'define x) (define foo (lambda () (define x 5) x)) (test 5 foo) (test 34 'define x) (define (foo x) ((lambda () (define x 5) x)) x) (test 88 foo 88) (test 4 foo 4) (test 34 'define x) (test 99 'internal-define (letrec ((foo (lambda (arg) (or arg (and (procedure? foo) (foo 99)))))) (define bar (foo #f)) (foo #f))) (test 77 'internal-define (letrec ((foo 77) (bar #f) (retfoo (lambda () foo))) (define baz (retfoo)) (retfoo))) (SECTION 6 1) (test #f not #t) (test #f not 3) (test #f not (list 3)) (test #t not #f) (test #f not '()) (test #f not (list)) (test #f not 'nil) ;(test #t boolean? #f) ;(test #f boolean? 0) ;(test #f boolean? '()) (SECTION 6 2) (test #t eqv? 'a 'a) (test #f eqv? 'a 'b) (test #t eqv? 2 2) (test #t eqv? '() '()) (test #t eqv? '10000 '10000) (test #f eqv? (cons 1 2)(cons 1 2)) (test #f eqv? (lambda () 1) (lambda () 2)) (test #f eqv? #f 'nil) (let ((p (lambda (x) x))) (test #t eqv? p p)) (define gen-counter (lambda () (let ((n 0)) (lambda () (set! n (+ n 1)) n)))) (let ((g (gen-counter))) (test #t eqv? g g)) (test #f eqv? (gen-counter) (gen-counter)) (letrec ((f (lambda () (if (eqv? f g) 'f 'both))) (g (lambda () (if (eqv? f g) 'g 'both)))) (test #f eqv? f g)) (test #t eq? 'a 'a) (test #f eq? (list 'a) (list 'a)) (test #t eq? '() '()) (test #t eq? car car) (let ((x '(a))) (test #t eq? x x)) (let ((x '#())) (test #t eq? x x)) (let ((x (lambda (x) x))) (test #t eq? x x)) (define test-eq?-eqv?-agreement (lambda (obj1 obj2) (cond ((eq? (eq? obj1 obj2) (eqv? obj1 obj2))) (else (record-error (list #f #t (list 'test-eq?-eqv?-agreement obj1 obj2))) (display "eqv? and eq? disagree about ") (write obj1) (display #\ ) (write obj2) (newline))))) (test-eq?-eqv?-agreement '#f '#f) (test-eq?-eqv?-agreement '#t '#t) (test-eq?-eqv?-agreement '#t '#f) (test-eq?-eqv?-agreement '(a) '(a)) (test-eq?-eqv?-agreement '(a) '(b)) (test-eq?-eqv?-agreement car car) (test-eq?-eqv?-agreement car cdr) (test-eq?-eqv?-agreement (list 'a) (list 'a)) (test-eq?-eqv?-agreement (list 'a) (list 'b)) (test-eq?-eqv?-agreement '#(a) '#(a)) (test-eq?-eqv?-agreement '#(a) '#(b)) (test-eq?-eqv?-agreement "abc" "abc") (test-eq?-eqv?-agreement "abc" "abz") (test #t equal? 'a 'a) (test #t equal? '(a) '(a)) (test #t equal? '(a (b) c) '(a (b) c)) (test #t equal? "abc" "abc") (test #t equal? 2 2) (test #t equal? (make-vector 5 'a) (make-vector 5 'a)) (SECTION 6 3) (test '(a b c d e) 'dot '(a . (b . (c . (d . (e . ())))))) (define x (list 'a 'b 'c)) (define y x) (and list? (test #t list? y)) (set-cdr! x 4) (test '(a . 4) 'set-cdr! x) (test #t eqv? x y) (test '(a b c . d) 'dot '(a . (b . (c . d)))) (and list? (test #f list? y)) (and list? (let ((x (list 'a))) (set-cdr! x x) (test #f 'list? (list? x)))) ;(test #t pair? '(a . b)) ;(test #t pair? '(a . 1)) ;(test #t pair? '(a b c)) ;(test #f pair? '()) ;(test #f pair? '#(a b)) (test '(a) cons 'a '()) (test '((a) b c d) cons '(a) '(b c d)) (test '("a" b c) cons "a" '(b c)) (test '(a . 3) cons 'a 3) (test '((a b) . c) cons '(a b) 'c) (test 'a car '(a b c)) (test '(a) car '((a) b c d)) (test 1 car '(1 . 2)) (test '(b c d) cdr '((a) b c d)) (test 2 cdr '(1 . 2)) (test '(a 7 c) list 'a (+ 3 4) 'c) (test '() list) (test 3 length '(a b c)) (test 3 length '(a (b) (c d e))) (test 0 length '()) (test '(x y) append '(x) '(y)) (test '(a b c d) append '(a) '(b c d)) (test '(a (b) (c)) append '(a (b)) '((c))) (test '() append) (test '(a b c . d) append '(a b) '(c . d)) (test 'a append '() 'a) (test '(c b a) reverse '(a b c)) (test '((e (f)) d (b c) a) reverse '(a (b c) d (e (f)))) (test 'c list-ref '(a b c d) 2) (test '(a b c) memq 'a '(a b c)) (test '(b c) memq 'b '(a b c)) (test '#f memq 'a '(b c d)) (test '#f memq (list 'a) '(b (a) c)) (test '((a) c) member (list 'a) '(b (a) c)) (test '(101 102) memv 101 '(100 101 102)) (define e '((a 1) (b 2) (c 3))) (test '(a 1) assq 'a e) (test '(b 2) assq 'b e) (test #f assq 'd e) (test #f assq (list 'a) '(((a)) ((b)) ((c)))) (test '((a)) assoc (list 'a) '(((a)) ((b)) ((c)))) (test '(5 7) assv 5 '((2 3) (5 7) (11 13))) (SECTION 6 4) ;(test #t symbol? 'foo) (test #t symbol? (car '(a b))) ;(test #f symbol? "bar") ;(test #t symbol? 'nil) ;(test #f symbol? '()) ;(test #f symbol? #f) ;;; But first, what case are symbols in? Determine the standard case: (define char-standard-case char-upcase) (if (string=? (symbol->string 'A) "a") (set! char-standard-case char-downcase)) (test #t 'standard-case (string=? (symbol->string 'a) (symbol->string 'A))) (test #t 'standard-case (or (string=? (symbol->string 'a) "A") (string=? (symbol->string 'A) "a"))) (define (str-copy s) (let ((v (make-string (string-length s)))) (do ((i (- (string-length v) 1) (- i 1))) ((< i 0) v) (string-set! v i (string-ref s i))))) (define (string-standard-case s) (set! s (str-copy s)) (do ((i 0 (+ 1 i)) (sl (string-length s))) ((>= i sl) s) (string-set! s i (char-standard-case (string-ref s i))))) (test (string-standard-case "flying-fish") symbol->string 'flying-fish) (test (string-standard-case "martin") symbol->string 'Martin) (test "Malvina" symbol->string (string->symbol "Malvina")) (test #t 'standard-case (eq? 'a 'A)) (define x (string #\a #\b)) (define y (string->symbol x)) (string-set! x 0 #\c) (test "cb" 'string-set! x) (test "ab" symbol->string y) (test y string->symbol "ab") (test #t eq? 'mISSISSIppi 'mississippi) (test #f 'string->symbol (eq? 'bitBlt (string->symbol "bitBlt"))) (test 'JollyWog string->symbol (symbol->string 'JollyWog)) (SECTION 6 5 5) (test #t number? 3) (test #t complex? 3) (test #t real? 3) (test #t rational? 3) (test #t integer? 3) (test #t exact? 3) (test #f inexact? 3) (test #t = 22 22 22) (test #t = 22 22) (test #f = 34 34 35) (test #f = 34 35) (test #t > 3 -6246) (test #f > 9 9 -2424) (test #t >= 3 -4 -6246) (test #t >= 9 9) (test #f >= 8 9) (test #t < -1 2 3 4 5 6 7 8) (test #f < -1 2 3 4 4 5 6 7) (test #t <= -1 2 3 4 5 6 7 8) (test #t <= -1 2 3 4 4 5 6 7) (test #f < 1 3 2) (test #f >= 1 3 2) (test #t zero? 0) (test #f zero? 1) (test #f zero? -1) (test #f zero? -100) (test #t positive? 4) (test #f positive? -4) (test #f positive? 0) (test #f negative? 4) (test #t negative? -4) (test #f negative? 0) (test #t odd? 3) (test #f odd? 2) (test #f odd? -4) (test #t odd? -1) (test #f even? 3) (test #t even? 2) (test #t even? -4) (test #f even? -1) (test 38 max 34 5 7 38 6) (test -24 min 3 5 5 330 4 -24) (test 7 + 3 4) (test '3 + 3) (test 0 +) (test 4 * 4) (test 1 *) (test -1 - 3 4) (test -3 - 3) (test 7 abs -7) (test 7 abs 7) (test 0 abs 0) (test 5 quotient 35 7) (test -5 quotient -35 7) (test -5 quotient 35 -7) (test 5 quotient -35 -7) (test 1 modulo 13 4) (test 1 remainder 13 4) (test 3 modulo -13 4) (test -1 remainder -13 4) (test -3 modulo 13 -4) (test 1 remainder 13 -4) (test -1 modulo -13 -4) (test -1 remainder -13 -4) (test 0 modulo 0 86400) (test 0 modulo 0 -86400) (define (divtest n1 n2) (= n1 (+ (* n2 (quotient n1 n2)) (remainder n1 n2)))) (test #t divtest 238 9) (test #t divtest -238 9) (test #t divtest 238 -9) (test #t divtest -238 -9) (test 4 gcd 0 4) (test 4 gcd -4 0) (test 4 gcd 32 -36) (test 0 gcd) (test 288 lcm 32 -36) (test 1 lcm) (SECTION 6 5 5) ;;; Implementations which don't allow division by 0 can have fragile ;;; string->number. (define (test-string->number str) (define ans (string->number str)) (cond ((not ans) #t) ((number? ans) #t) (else ans))) (for-each (lambda (str) (test #t test-string->number str)) '("+#.#" "-#.#" "#.#" "1/0" "-1/0" "0/0" "+1/0i" "-1/0i" "0/0i" "0/0-0/0i" "1/0-1/0i" "-1/0+1/0i" "#i" "#e" "#" "#i0/0")) (cond ((number? (string->number "1+1i")) ;More kawa bait (test #t number? (string->number "#i-i")) (test #t number? (string->number "#i+i")) (test #t number? (string->number "#i2+i")))) ;;;;From: fred@sce.carleton.ca (Fred J Kaudel) ;;; Modified by jaffer. (define (test-inexact) (define f3.9 (string->number "3.9")) (define f4.0 (string->number "4.0")) (define f-3.25 (string->number "-3.25")) (define f.25 (string->number ".25")) (define f4.5 (string->number "4.5")) (define f3.5 (string->number "3.5")) (define f0.0 (string->number "0.0")) (define f0.8 (string->number "0.8")) (define f1.0 (string->number "1.0")) (define wto write-test-obj) (define lto load-test-obj) (newline) (display ";testing inexact numbers; ") (newline) (SECTION 6 2) (test #f eqv? 1 f1.0) (test #f eqv? 0 f0.0) (SECTION 6 5 5) (test #t inexact? f3.9) (test #t 'inexact? (inexact? (max f3.9 4))) (test f4.0 'max (max f3.9 4)) (test f4.0 'exact->inexact (exact->inexact 4)) (test (- f4.0) round (- f4.5)) (test (- f4.0) round (- f3.5)) (test (- f4.0) round (- f3.9)) (test f0.0 round f0.0) (test f0.0 round f.25) (test f1.0 round f0.8) (test f4.0 round f3.5) (test f4.0 round f4.5) (test 1 expt 0 0) (test 0 expt 0 1) (test (atan 1) atan 1 1) (set! write-test-obj (list f.25 f-3.25));.25 inexact errors less likely. (set! load-test-obj (list 'define 'foo (list 'quote write-test-obj))) (test #t call-with-output-file "tmp3" (lambda (test-file) (write-char #\; test-file) (display #\; test-file) (display ";" test-file) (write write-test-obj test-file) (newline test-file) (write load-test-obj test-file) (output-port? test-file))) (check-test-file "tmp3") (set! write-test-obj wto) (set! load-test-obj lto) (let ((x (string->number "4195835.0")) (y (string->number "3145727.0"))) (test #t 'pentium-fdiv-bug (> f1.0 (- x (* (/ x y) y))))) (report-errs)) (define (test-inexact-printing) (let ((f0.0 (string->number "0.0")) (f0.5 (string->number "0.5")) (f1.0 (string->number "1.0")) (f2.0 (string->number "2.0"))) (define log2 (let ((l2 (log 2))) (lambda (x) (/ (log x) l2)))) (define (slow-frexp x) (if (zero? x) (list f0.0 0) (let* ((l2 (log2 x)) (e (floor (log2 x))) (e (if (= l2 e) (inexact->exact e) (+ (inexact->exact e) 1))) (f (/ x (expt 2 e)))) (list f e)))) (define float-precision (let ((mantissa-bits (do ((i 0 (+ i 1)) (eps f1.0 (* f0.5 eps))) ((= f1.0 (+ f1.0 eps)) i))) (minval (do ((x f1.0 (* f0.5 x))) ((zero? (* f0.5 x)) x)))) (lambda (x) (apply (lambda (f e) (let ((eps (cond ((= f1.0 f) (expt f2.0 (+ 1 (- e mantissa-bits)))) ((zero? f) minval) (else (expt f2.0 (- e mantissa-bits)))))) (if (zero? eps) ;Happens if gradual underflow. minval eps))) (slow-frexp x))))) (define (float-print-test x) (define (testit number) (eqv? number (string->number (number->string number)))) (let ((eps (float-precision x)) (all-ok? #t)) (do ((j -100 (+ j 1))) ((or (not all-ok?) (> j 100)) all-ok?) (let* ((xx (+ x (* j eps))) (ok? (testit xx))) (cond ((not ok?) (display "Number readback failure for ") (display `(+ ,x (* ,j ,eps))) (newline) (display xx) (newline) (set! all-ok? #f)) ;; (else (display xx) (newline)) ))))) (define (mult-float-print-test x) (let ((res #t)) (for-each (lambda (mult) (or (float-print-test (* mult x)) (set! res #f))) (map string->number '("1.0" "10.0" "100.0" "1.0e20" "1.0e50" "1.0e100" "0.1" "0.01" "0.001" "1.0e-20" "1.0e-50" "1.0e-100"))) res)) (SECTION 6 5 6) (test #t 'float-print-test (float-print-test f0.0)) (test #t 'mult-float-print-test (mult-float-print-test f1.0)) (test #t 'mult-float-print-test (mult-float-print-test (string->number "3.0"))) (test #t 'mult-float-print-test (mult-float-print-test (string->number "7.0"))) (test #t 'mult-float-print-test (mult-float-print-test (string->number "3.1415926535897931"))) (test #t 'mult-float-print-test (mult-float-print-test (string->number "2.7182818284590451"))))) (define (test-bignum) (define tb (lambda (n1 n2) (= n1 (+ (* n2 (quotient n1 n2)) (remainder n1 n2))))) (newline) (display ";testing bignums; ") (newline) (SECTION 6 5 7) (test 0 modulo 33333333333333333333 3) (test 0 modulo 33333333333333333333 -3) (test 0 remainder 33333333333333333333 3) (test 0 remainder 33333333333333333333 -3) (test 2 modulo 33333333333333333332 3) (test -1 modulo 33333333333333333332 -3) (test 2 remainder 33333333333333333332 3) (test 2 remainder 33333333333333333332 -3) (test 1 modulo -33333333333333333332 3) (test -2 modulo -33333333333333333332 -3) (test -2 remainder -33333333333333333332 3) (test -2 remainder -33333333333333333332 -3) (test 3 modulo 3 33333333333333333333) (test 33333333333333333330 modulo -3 33333333333333333333) (test 3 remainder 3 33333333333333333333) (test -3 remainder -3 33333333333333333333) (test -33333333333333333330 modulo 3 -33333333333333333333) (test -3 modulo -3 -33333333333333333333) (test 3 remainder 3 -33333333333333333333) (test -3 remainder -3 -33333333333333333333) (test 0 modulo -2177452800 86400) (test 0 modulo 2177452800 -86400) (test 0 modulo 2177452800 86400) (test 0 modulo -2177452800 -86400) (test 0 modulo 0 -2177452800) (test #t 'remainder (tb 281474976710655325431 65535)) (test #t 'remainder (tb 281474976710655325430 65535)) (SECTION 6 5 8) (test 281474976710655325431 string->number "281474976710655325431") (test "281474976710655325431" number->string 281474976710655325431) (report-errs)) (define (test-numeric-predicates) (let* ((big-ex (expt 2 90)) (big-inex (exact->inexact big-ex))) (newline) (display ";testing bignum-inexact comparisons;") (newline) (SECTION 6 5 5) (test #f = (+ big-ex 1) big-inex (- big-ex 1)) (test #f = big-inex (+ big-ex 1) (- big-ex 1)) (test #t < (- (inexact->exact big-inex) 1) big-inex (+ (inexact->exact big-inex) 1)))) (SECTION 6 5 9) (test "0" number->string 0) (test "100" number->string 100) (test "100" number->string 256 16) (test 100 string->number "100") (test 256 string->number "100" 16) (test #f string->number "") (test #f string->number ".") (test #f string->number "d") (test #f string->number "D") (test #f string->number "i") (test #f string->number "I") (test #f string->number "3i") (test #f string->number "3I") (test #f string->number "33i") (test #f string->number "33I") (test #f string->number "3.3i") (test #f string->number "3.3I") (test #f string->number "-") (test #f string->number "+") (test #t 'string->number (or (not (string->number "80000000" 16)) (positive? (string->number "80000000" 16)))) (test #t 'string->number (or (not (string->number "-80000000" 16)) (negative? (string->number "-80000000" 16)))) (SECTION 6 6) (test #t eqv? '#\ #\Space) (test #t eqv? #\space '#\Space) (test #t char? #\a) (test #t char? #\() (test #t char? #\ ) (test #t char? '#\newline) (test #f char=? #\A #\B) (test #f char=? #\a #\b) (test #f char=? #\9 #\0) (test #t char=? #\A #\A) (test #t char? #\A #\B) (test #f char>? #\a #\b) (test #t char>? #\9 #\0) (test #f char>? #\A #\A) (test #t char<=? #\A #\B) (test #t char<=? #\a #\b) (test #f char<=? #\9 #\0) (test #t char<=? #\A #\A) (test #f char>=? #\A #\B) (test #f char>=? #\a #\b) (test #t char>=? #\9 #\0) (test #t char>=? #\A #\A) (test #f char-ci=? #\A #\B) (test #f char-ci=? #\a #\B) (test #f char-ci=? #\A #\b) (test #f char-ci=? #\a #\b) (test #f char-ci=? #\9 #\0) (test #t char-ci=? #\A #\A) (test #t char-ci=? #\A #\a) (test #t char-ci? #\A #\B) (test #f char-ci>? #\a #\B) (test #f char-ci>? #\A #\b) (test #f char-ci>? #\a #\b) (test #t char-ci>? #\9 #\0) (test #f char-ci>? #\A #\A) (test #f char-ci>? #\A #\a) (test #t char-ci<=? #\A #\B) (test #t char-ci<=? #\a #\B) (test #t char-ci<=? #\A #\b) (test #t char-ci<=? #\a #\b) (test #f char-ci<=? #\9 #\0) (test #t char-ci<=? #\A #\A) (test #t char-ci<=? #\A #\a) (test #f char-ci>=? #\A #\B) (test #f char-ci>=? #\a #\B) (test #f char-ci>=? #\A #\b) (test #f char-ci>=? #\a #\b) (test #t char-ci>=? #\9 #\0) (test #t char-ci>=? #\A #\A) (test #t char-ci>=? #\A #\a) (test #t char-alphabetic? #\a) (test #t char-alphabetic? #\A) (test #t char-alphabetic? #\z) (test #t char-alphabetic? #\Z) (test #f char-alphabetic? #\0) (test #f char-alphabetic? #\9) (test #f char-alphabetic? #\space) (test #f char-alphabetic? #\;) (test #f char-numeric? #\a) (test #f char-numeric? #\A) (test #f char-numeric? #\z) (test #f char-numeric? #\Z) (test #t char-numeric? #\0) (test #t char-numeric? #\9) (test #f char-numeric? #\space) (test #f char-numeric? #\;) (test #f char-whitespace? #\a) (test #f char-whitespace? #\A) (test #f char-whitespace? #\z) (test #f char-whitespace? #\Z) (test #f char-whitespace? #\0) (test #f char-whitespace? #\9) (test #t char-whitespace? #\space) (test #f char-whitespace? #\;) (test #f char-upper-case? #\0) (test #f char-upper-case? #\9) (test #f char-upper-case? #\space) (test #f char-upper-case? #\;) (test #f char-lower-case? #\0) (test #f char-lower-case? #\9) (test #f char-lower-case? #\space) (test #f char-lower-case? #\;) (test #\. integer->char (char->integer #\.)) (test #\A integer->char (char->integer #\A)) (test #\a integer->char (char->integer #\a)) (test #\A char-upcase #\A) (test #\A char-upcase #\a) (test #\a char-downcase #\A) (test #\a char-downcase #\a) (SECTION 6 7) (test #t string? "The word \"recursion\\\" has many meanings.") ;(test #t string? "") (define f (make-string 3 #\*)) (test "?**" 'string-set! (begin (string-set! f 0 #\?) f)) (test "abc" string #\a #\b #\c) (test "" string) (test 3 string-length "abc") (test #\a string-ref "abc" 0) (test #\c string-ref "abc" 2) (test 0 string-length "") (test "" substring "ab" 0 0) (test "" substring "ab" 1 1) (test "" substring "ab" 2 2) (test "a" substring "ab" 0 1) (test "b" substring "ab" 1 2) (test "ab" substring "ab" 0 2) (test "foobar" string-append "foo" "bar") (test "foo" string-append "foo") (test "foo" string-append "foo" "") (test "foo" string-append "" "foo") (test "" string-append) (test "" make-string 0) (test #t string=? "" "") (test #f string? "" "") (test #t string<=? "" "") (test #t string>=? "" "") (test #t string-ci=? "" "") (test #f string-ci? "" "") (test #t string-ci<=? "" "") (test #t string-ci>=? "" "") (test #f string=? "A" "B") (test #f string=? "a" "b") (test #f string=? "9" "0") (test #t string=? "A" "A") (test #t string? "A" "B") (test #f string>? "a" "b") (test #t string>? "9" "0") (test #f string>? "A" "A") (test #t string<=? "A" "B") (test #t string<=? "a" "b") (test #f string<=? "9" "0") (test #t string<=? "A" "A") (test #f string>=? "A" "B") (test #f string>=? "a" "b") (test #t string>=? "9" "0") (test #t string>=? "A" "A") (test #f string-ci=? "A" "B") (test #f string-ci=? "a" "B") (test #f string-ci=? "A" "b") (test #f string-ci=? "a" "b") (test #f string-ci=? "9" "0") (test #t string-ci=? "A" "A") (test #t string-ci=? "A" "a") (test #t string-ci? "A" "B") (test #f string-ci>? "a" "B") (test #f string-ci>? "A" "b") (test #f string-ci>? "a" "b") (test #t string-ci>? "9" "0") (test #f string-ci>? "A" "A") (test #f string-ci>? "A" "a") (test #t string-ci<=? "A" "B") (test #t string-ci<=? "a" "B") (test #t string-ci<=? "A" "b") (test #t string-ci<=? "a" "b") (test #f string-ci<=? "9" "0") (test #t string-ci<=? "A" "A") (test #t string-ci<=? "A" "a") (test #f string-ci>=? "A" "B") (test #f string-ci>=? "a" "B") (test #f string-ci>=? "A" "b") (test #f string-ci>=? "a" "b") (test #t string-ci>=? "9" "0") (test #t string-ci>=? "A" "A") (test #t string-ci>=? "A" "a") (SECTION 6 8) (test #t vector? '#(0 (2 2 2 2) "Anna")) ;(test #t vector? '#()) (test '#(a b c) vector 'a 'b 'c) (test '#() vector) (test 3 vector-length '#(0 (2 2 2 2) "Anna")) (test 0 vector-length '#()) (test 8 vector-ref '#(1 1 2 3 5 8 13 21) 5) (test '#(0 ("Sue" "Sue") "Anna") 'vector-set (let ((vec (vector 0 '(2 2 2 2) "Anna"))) (vector-set! vec 1 '("Sue" "Sue")) vec)) (test '#(hi hi) make-vector 2 'hi) (test '#() make-vector 0) (test '#() make-vector 0 'a) (SECTION 6 9) (test #t procedure? car) ;(test #f procedure? 'car) (test #t procedure? (lambda (x) (* x x))) (test #f procedure? '(lambda (x) (* x x))) (test #t call-with-current-continuation procedure?) (test 7 apply + (list 3 4)) (test 7 apply (lambda (a b) (+ a b)) (list 3 4)) (test 17 apply + 10 (list 3 4)) (test '() apply list '()) (define compose (lambda (f g) (lambda args (f (apply g args))))) (test 30 (compose sqt *) 12 75) (test '(b e h) map cadr '((a b) (d e) (g h))) (test '(5 7 9) map + '(1 2 3) '(4 5 6)) (test '(1 2 3) map + '(1 2 3)) (test '(1 2 3) map * '(1 2 3)) (test '(-1 -2 -3) map - '(1 2 3)) (test '#(0 1 4 9 16) 'for-each (let ((v (make-vector 5))) (for-each (lambda (i) (vector-set! v i (* i i))) '(0 1 2 3 4)) v)) (test -3 call-with-current-continuation (lambda (exit) (for-each (lambda (x) (if (negative? x) (exit x))) '(54 0 37 -3 245 19)) #t)) (define list-length (lambda (obj) (call-with-current-continuation (lambda (return) (letrec ((r (lambda (obj) (cond ((null? obj) 0) ((pair? obj) (+ (r (cdr obj)) 1)) (else (return #f)))))) (r obj)))))) (test 4 list-length '(1 2 3 4)) (test #f list-length '(a b . c)) (test '() map cadr '()) ;;; This tests full conformance of call-with-current-continuation. It ;;; is a separate test because some schemes do not support call/cc ;;; other than escape procedures. I am indebted to ;;; raja@copper.ucs.indiana.edu (Raja Sooriamurthi) for fixing this ;;; code. The function leaf-eq? compares the leaves of 2 arbitrary ;;; trees constructed of conses. (define (next-leaf-generator obj eot) (letrec ((return #f) (cont (lambda (x) (recur obj) (set! cont (lambda (x) (return eot))) (cont #f))) (recur (lambda (obj) (if (pair? obj) (for-each recur obj) (call-with-current-continuation (lambda (c) (set! cont c) (return obj))))))) (lambda () (call-with-current-continuation (lambda (ret) (set! return ret) (cont #f)))))) (define (leaf-eq? x y) (let* ((eot (list 'eot)) (xf (next-leaf-generator x eot)) (yf (next-leaf-generator y eot))) (letrec ((loop (lambda (x y) (cond ((not (eq? x y)) #f) ((eq? eot x) #t) (else (loop (xf) (yf))))))) (loop (xf) (yf))))) (define (test-cont) (newline) (display ";testing continuations; ") (newline) (SECTION 6 9) (test #t leaf-eq? '(a (b (c))) '((a) b c)) (test #f leaf-eq? '(a (b (c))) '((a) b c d)) (report-errs)) ;;; Test Optional R4RS DELAY syntax and FORCE procedure (define (test-delay) (newline) (display ";testing DELAY and FORCE; ") (newline) (SECTION 6 9) (test 3 'delay (force (delay (+ 1 2)))) (test '(3 3) 'delay (let ((p (delay (+ 1 2)))) (list (force p) (force p)))) (test 2 'delay (letrec ((a-stream (letrec ((next (lambda (n) (cons n (delay (next (+ n 1))))))) (next 0))) (head car) (tail (lambda (stream) (force (cdr stream))))) (head (tail (tail a-stream))))) (letrec ((count 0) (p (delay (begin (set! count (+ count 1)) (if (> count x) count (force p))))) (x 5)) (test 6 force p) (set! x 10) (test 6 force p)) (test 3 'force (letrec ((p (delay (if c 3 (begin (set! c #t) (+ (force p) 1))))) (c #f)) (force p))) (report-errs)) (SECTION 6 10 1) (test #t input-port? (current-input-port)) (test #t output-port? (current-output-port)) (test #t call-with-input-file "r4rstest.scm" input-port?) (define this-file (open-input-file "r4rstest.scm")) (test #t input-port? this-file) (SECTION 6 10 2) (test #\; peek-char this-file) (test #\; read-char this-file) (test '(define cur-section '()) read this-file) (test #\( peek-char this-file) (test '(define errs '()) read this-file) (close-input-port this-file) (close-input-port this-file) (define (check-test-file name) (define test-file (open-input-file name)) (test #t 'input-port? (call-with-input-file name (lambda (test-file) (test load-test-obj read test-file) (test #t eof-object? (peek-char test-file)) (test #t eof-object? (read-char test-file)) (input-port? test-file)))) (test #\; read-char test-file) (test #\; read-char test-file) (test #\; read-char test-file) (test write-test-obj read test-file) (test load-test-obj read test-file) (close-input-port test-file)) (SECTION 6 10 3) (define write-test-obj '(#t #f a () 9739 -3 . #((test) "te \" \" st" "" test #() b c))) (define load-test-obj (list 'define 'foo (list 'quote write-test-obj))) (test #t call-with-output-file "tmp1" (lambda (test-file) (write-char #\; test-file) (display #\; test-file) (display ";" test-file) (write write-test-obj test-file) (newline test-file) (write load-test-obj test-file) (output-port? test-file))) (check-test-file "tmp1") (define test-file (open-output-file "tmp2")) (write-char #\; test-file) (display #\; test-file) (display ";" test-file) (write write-test-obj test-file) (newline test-file) (write load-test-obj test-file) (test #t output-port? test-file) (close-output-port test-file) (check-test-file "tmp2") (define (test-sc4) (newline) (display ";testing scheme 4 functions; ") (newline) (SECTION 6 7) (test '(#\P #\space #\l) string->list "P l") (test '() string->list "") (test "1\\\"" list->string '(#\1 #\\ #\")) (test "" list->string '()) (SECTION 6 8) (test '(dah dah didah) vector->list '#(dah dah didah)) (test '() vector->list '#()) (test '#(dididit dah) list->vector '(dididit dah)) (test '#() list->vector '()) (SECTION 6 10 4) (load "tmp1") (test write-test-obj 'load foo) (report-errs)) (report-errs) (let ((have-inexacts? (and (string->number "0.0") (inexact? (string->number "0.0")))) (have-bignums? (let ((n (string->number "281474976710655325431"))) (and n (exact? n))))) (cond (have-inexacts? (test-inexact) (test-inexact-printing))) (if have-bignums? (test-bignum)) (if (and have-inexacts? have-bignums?) (test-numeric-predicates))) (newline) (display "To fully test continuations, Scheme 4, and DELAY/FORCE do:") (newline) (display "(test-cont) (test-sc4) (test-delay)") (newline) "last item in file"