Portable Foreign Function
Interface for R7RS Documentation

Portable Foreign Function
Interface for R7RS

Portable foreign function interface for R7RS. It is portable in the sense that
it supports multiple implementations, as opposed to being portable by
conforming to some specification.

Project

Issue trackers
Maling Ii
[enkins

Table of contents

* Goals
* Non Goals
» Status
© QLJI‘I‘QI’II; caveats
e Implementation 1
o Beta
o Alpha
o Not started
o Other
* Documentation
> Usage
m Chibi
m Chicken
m Racket
m Kawa
o Reference
> Types
o Pr r nd macr
m pffi-ini
m pffi-size-of
m pffi-align-of
m pffi-shared-object- -1
m pffi-shared-object-1
m pffi-pointer-null
m pffi-pointer-null?
m pffi-pointer-allocate

https://todo.sr.ht/~retropikzel/r7rs-pffi
https://sr.ht/~retropikzel/r7rs-pffi/trackers
https://sr.ht/~retropikzel/r7rs-pffi/lists
https://jenkins.scheme.org/job/r7rs_pffi/job/r7rs-pffi/

m pffi-pointer-address

[] pff -pointer?
ffi-pointer-fr
ffi-pointer-set!

n pffl_p_QmJ;ﬁr_g_eJ;

m pffi-string->pointer
ffi- in r->strin
ffi- -mak

(] pffl-st ruct- meLer

Goals

* Support only R7RS implementations
* Same interface on all implementations
o Some things that are procedures on one implementation are
macros on other, but they must behave the same
» Stability and being boring after 1.0.0 is reached

Non goals

» To have every possible FFI feature

* Compiling of used library C code at any point
o That is no stubs, no C code generated by the library and so on
o The pffi library itself may require compilation on installation

Status

Currently the interface of the library is in okay shape. It propably will not
change much but no guarantees are being made just yet.

Due to supporting many different Scheme implementations, different parts
of this software are in different stage. As a whole it is still in alpha stage.
That said the interface should not be changing anymore and some
implementations are in beta.

Current caveats

* No way to pass structs by value
* Most implementations are missing callback support

Implementation table

Beta
. Pifi- ey . . . :
pffi- pifi- shared- .-, o4 Pffi- pifi- pifi- pifi- pffi-
init S12€" object- object- pointer- pointer- pointer- pointer- pointer
of auto- load null null? allocate address
load
Chibi X X X X X X X X X
Gauche X X X X X X X X
Guile X X X X X X X X
Kawa X X X X X X X X
Racket X X X X X X X X
Saggittarius X X X X X X X X
Alpha
o Pfi-
pffi- pifi- shared- .~ 4 pffi- pifi- pifi- pifi- pffi-
init size- object- object- pointer- pointer- pointer- pointer- pointer? P
of auto- load null null? allocate address
load
Chicken-5 X X X X X X X X
Cyclone X X X X X X X X
Gambit X X X
Gerbil X
Larceny X
Mosh X X X X X X X X
Skint X
Stklos X X X X X X X X
tr7
Ypsilon
Not started
* LIPS

o Will work on nodejs by using some C FFI library from npm

o Javascript side needs design

* Biwascheme

o Will work on nodejs by using some C FFI library from npm

o Javascript side needs design

https://lips.js.org/
https://www.biwascheme.org/

* MIT-Scheme

o Need to study the implementation more
e Airshi

o Need to study the implementation more

o Gambit compiles to different targets other than C too, for example
Javascript. It would be cool and interesting to see if this FFI could
also support some of those

o When LIPS and Biwascheme Javascript side is done then Gambit
should be done too

* s48-r/rs
o Need to study the implementation more

* prescheme
o Need to study the implementation more

Other
* 57
o Propably does not need FFI as it is embeddable only

* Loko
o Desires no C interop, I can respect that

Documentation
Usage
Chibi

Needs libffi-dev, on Debina/Ubuntu/Mint install with:
apt install libffi-dev

Build with:

chibi-ffi retropikzel/r7rs-pffi/r7rs-pffi-chibi.stub
gcc -o retropikzel/r7rs-pffi/xr7rs-pffi-chibi.so -fPIC -shared
retropikzel/r7rs-pffi/r7rs-pffi-chibi.c -1lchibi-scheme -1ffi

Chicken

Needs r7rs egg, install with:

chicken-install r7zrs

https://www.gnu.org/software/mit-scheme/
https://gitlab.com/mbabich/airship-scheme
https://gambitscheme.org/
https://codeberg.org/prescheme/s48-r7rs
https://codeberg.org/prescheme/prescheme
https://scheme.fail://ccrma.stanford.edu/software/snd/snd/s7.html
https://scheme.fail/
https://wiki.call-cc.org/eggref/5/r7rs

Racket

Needs racket-r7rs, install with:

raco pkg install --auto r7rs

Kawa

Kawa Needs at least Java version 22
Needs jvm flags:

-add-exports java.base/jdk.internal.foreign.abi=ALL-UNNAMED
-add-exports java.base/jdk.internal.foreign.layout=ALL-UNNAMED
-add-exports java.base/jdk.internal.foreign=ALL-UNNAMED
-enable-native-access=ALL-UNNAMED

Reference

Types

Types are given as symbols, for example ’int8 or 'pointer.

int8
uint8
intlo
uint16
int32
uint32
int64
uint64
char
unsigned-char
short
unsigned-short
int
unsigned-int
long
unsigned-long
float
double
pointer
callback

o Callback function

Procedures and macros

https://github.com/lexi-lambda/racket-r7rs

Some of these are procedures and some macros, it might also change
implementation to implementation.

pffi-init

Always call this first, on most implementation it does nothing but some
implementations might need initialisation run.

pffi-size-of object -> number

Returns the size of the pffi-struct, pffi-enum or pffi-type.

pffi-align-of type -> number

Returns the align of the type.

pffi-shared-object-auto-load headers shared-object-name [options] -> object

Load given shared object automatically searching many predefined paths.

Takes as argument a list of C headers, these are for the compiler ones. And
an shared-object name, used by the dynamic FFI’s. The name of the shared
object should not contain suffix like .so or .dll. Nor should it contain any
prefix like “lib”.

Additional options argument can be provided, theys should be a pair with a
keyword. The options are:

* additional-versions
o Search for additional versions of shared object, given shared
object “c” and additional versions “6” “7” on linux the files “libc”,
“libc.6”, “libc.7” are searched for.
o Can be either numbers or strings
* additional-paths
o Give additional paths to search shared objects for

Example:

(define libc-stdlib
(cond-expand
(windows (pffi-shared-object-auto-load (list "stdlib.h")
"ucrtbase"))
(else (pffi-shared-object-auto-load (list "stdlib.h")
g
'(additional-versions

(ll6ll))

'(additional-seaxch-
paths . ("."))))))

pffi-shared-object-load headers path [options]

It is recommended to use the pffi-shared-object-auto-load instead of this
directly.

Headers is a list of strings needed to be included, for example
(list "curl/curl.h")

Path is the full path of the shared object without any “lib” prefix or “.so/.dll”
suffix. For example:

n Curl n
Options:

* additional-versions
o List of different versions of library to try, for example (list “.0” “.
1")

pffi-pointer-null -> pointer

Returns a new NULL pointer.

pffi-pointer-null? pointer -> boolean

Returns #t if given pointer is null pointer, #f otherwise.

pffi-pointer-allocate size -> pointer

Returns newly allocated pointer of given size.

pffi-pointer-address pointer -> number

Returns the address of given pointer as number.

pffi-pointer? object -> boolean

Returns #t if given object is pointer, #f otherwise.

pffi-pointer-free pointer

Frees given pointer.

pffi-pointer-set! pointer type offset value

Sets the value on a pointer on given offset. For example:

(define p (pffi-pointer-allocate 128))
(pffi-pointer-set! p 'int 64 100)

Would set the offset of 64, on pointer p to value 100.

pffi-pointer-get pointer type offset -> object

Gets the value from a pointer on given offset. For example:

(define p (pffi-pointer-allocate 128))
(pffi-pointer-set! p 'int 64 100)
(pffi-pointer-get p 'int 64)

> 100

pffi-string->pointer string -> pointer

Makes pointer out of a given string.

pffi-pointer->string pointer -> string

Makes string out of a given pointer.

pffi-struct-make c-type members . pointer -> pffi-struct

Creates a new pffi-struct and allocates pointer for it. The members
argument is a list of member names and types. For example:

(define color (pffi-struct-make 'color '((int8 . r) (int8 . Qg)
(int8 . b) (int8 .a))))

(define test (pffi-struct-make "struct test" '((int8 . r) (int8
g) (int8 . b) (int8 .a))))

C-type argument can be symbol or a string.

pffi-struct-pointer pffi-struct -> pointer

Returns the pointer that holds the struct content. You need to use this when
passing a struct as a pointer to foreign functions.

(define s (pffi-struct-make 'test '((int . r) (int . g) (int .

b))))
(pffi-struct-pointer s)

pffi-struct-offset-get member-name -> number

Returns the offset of a struct member with given name.

pffi-struct-get pffi-struct member-name -> object

Returns the value of the givens struct member.

pffi-struct-set! pffi-struct member-name value

Sets the value of the givens struct member. It is up to you to make sure that
the type of value is correct.

pffi-define scheme-name shared-object c-name return-type argument-types

Defines a new foreign function to be used from Scheme code. For example:

(define libc-stdlib
(cond-expand

(windows (pffi-shared-object-auto-load (list "stdlib.h")
(list) "ucrtbase" (list "")))

(else (pffi-shared-object-auto-load (list "stdlib.h")
(list) "c" (list "" "6")))))
(pffi-define c-puts libc-stdlib 'puts 'int (list 'pointer))
(c-puts "Message brought to you by FFI!")

pffi-define-callback scheme-name return-type argument-types procedure

Defines a new Sceme function to be used as callback to C code. For
example:

; Load the shared library
(define libc-stdlib
(cond-expand
(windows (pffi-shared-object-auto-load (list "stdlib.h")
(list) "ucrtbase" (list "")))
(else (pffi-shared-object-auto-load (list "stdlib.h")
(list) "c" (list "" "6")))))

; Define C function that takes a callback
(pffi-define qgsort libc-stdlib 'gsort 'void (list 'pointer
'int 'callback))

int

; Define our callback
(pffi-define-callback compare
'int
(list 'pointer 'pointer)
(lambda (pointer-a pointer-b)
(let ((a (pffi-pointer-get pointer-a 'int
2))

(b (pffi-pointer-get pointer-b 'int

2)))
(cond ((> a b) 1)
((= ab) 0)
((<ab)-1)))))

; Create new array of ints to be sorted

(define array (pffi-pointer-allocate (* (pffi-size-of 'int) 3)))
(pffi-pointer-set! array 'int (* (pffi-size-of 'int) 0) 3)
(pffi-pointer-set! array 'int (* (pffi-size-of 'int) 1) 2)
(pffi-pointer-set! array 'int (* (pffi-size-of 'int) 2) 1)

(display array)
(newline)
> (3 2 1)

; Sort the array
(qsort array 3 (pffi-size-of 'int) compare)

(display array)
(newline)
7> (1 2 3)

	Portable Foreign Function Interface for R7RS Documentation
	Portable Foreign Function Interface for R7RS
	Table of contents
	Goals
	Non goals
	Status
	Current caveats

	Implementation table
	Beta
	Alpha
	Not started
	Other

	Documentation
	Usage
	Chibi
	Chicken
	Racket
	Kawa

	Reference
	Types
	Procedures and macros
	pffi-init
	pffi-size-of object -> number
	pffi-align-of type -> number
	pffi-shared-object-auto-load headers shared-object-name [options] -> object
	pffi-shared-object-load headers path [options]
	pffi-pointer-null -> pointer
	pffi-pointer-null? pointer -> boolean
	pffi-pointer-allocate size -> pointer
	pffi-pointer-address pointer -> number
	pffi-pointer? object -> boolean
	pffi-pointer-free pointer
	pffi-pointer-set! pointer type offset value
	pffi-pointer-get pointer type offset -> object
	pffi-string->pointer string -> pointer
	pffi-pointer->string pointer -> string
	pffi-struct-make c-type members . pointer -> pffi-struct
	pffi-struct-pointer pffi-struct -> pointer
	pffi-struct-offset-get member-name -> number
	pffi-struct-get pffi-struct member-name -> object
	pffi-struct-set! pffi-struct member-name value
	pffi-define scheme-name shared-object c-name return-type argument-types
	pffi-define-callback scheme-name return-type argument-types procedure

