
foreign-c a portable foreign
function interface for R7RS
Schemes

foreign-c

foreign-c is a C foreign function interface (FFI) library for R7RS Schemes. It

is portable in the sense that it supports multiple implementations, as

opposed to being portable by conforming to some specification.

Issue tracker

Maling lists

Jenkins

Installation

Documentation

Types

Primitives 1

c-type-size

define-c-library

define-c-procedure

c-bytevector?

c-bytevector-u8-set!

c-bytevector-u8-ref

c-bytevector-pointer-set!

c-bytevector-pointer-ref

Primitives 2

define-c-callback

c-bytevector

make-c-null

c-null?

c-free

make-c-bytevector

call-with-address-of

native-endianness

c-bytevector-s8-set!

c-bytevector-s8-ref

c-bytevector-s16-set!

c-bytevector-s16-ref

c-bytevector-s16-native-set!

c-bytevector-s16-native-ref

c-bytevector-u16-set!

c-bytevector-u16-ref

c-bytevector-u16-native-set!

c-bytevector-u16-native-ref

•

•

◦

◦

▪

▪

▪

▪

▪

▪

▪

▪

◦

▪

◦

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

https://sr.ht/~retropikzel/foreign-c/trackers
https://sr.ht/~retropikzel/foreign-c/lists
https://jenkins.scheme.org/job/foreign_c/job/foreign-c/

c-bytevector-s32-set!

c-bytevector-s32-ref

c-bytevector-s32-native-set!

c-bytevector-s32-native-ref

c-bytevector-u32-set!

c-bytevector-u32-ref

c-bytevector-u32-native-set!

c-bytevector-u32-native-ref

c-bytevector-s64-set!

c-bytevector-s64-ref

c-bytevector-s64-native-set!

c-bytevector-s64-native-ref

c-bytevector-u64-set!

c-bytevector-u64-ref

c-bytevector-u64-native-set!

c-bytevector-u64-native-ref

c-bytevector-sint-set!

c-bytevector-sint-ref

c-bytevector-uint-set!

c-bytevector-uint-ref

c-bytevector-ieee-single-set!

c-bytevector-ieee-single-native-set!

c-bytevector-ieee-single-ref

c-bytevector-ieee-single-native-ref

c-bytevector-ieee-double-set!

c-bytevector-ieee-double-native-set!

c-bytevector-ieee-double-ref

c-bytevector-ieee-double-native-ref

bytevector->c-bytevector

c-bytevector->bytevector

string->c-utf8

c-utf8->string

Environment variables

Implementation support tables

Required versions:

Chibi > 0.11

At the only 0.11 is out so build from git

Chicken >= 5.4.0 < 6

Gauche >= 0.9.15

Does not yet work with snow-chibi install

Guile >= 3

Does not yet work with snow-chibi install

Has include bug, might not work on all situations

Kawa >= 3.11 and Java >= 22

Needs arguments to enable FFI

-J–add-exports=java.base/jdk.internal.foreign.abi=ALL-

UNNAMED

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

◦

•

◦

•

•

◦

•

◦

◦

•

◦

▪

-J–add-exports=java.base/jdk.internal.foreign.layout=ALL-

UNNAMED

-J–add-exports=java.base/jdk.internal.foreign=ALL-

UNNAMED

-J–enable-native-access=ALL-UNNAMED

-J–enable-preview

All needed arguments on one line for copy pasting

-J–add-exports=java.base/jdk.internal.foreign.abi=ALL-

UNNAMED -J–add-exports=java.base/

jdk.internal.foreign.layout=ALL-UNNAMED -J–add-

exports=java.base/jdk.internal.foreign=ALL-UNNAMED -J–

enable-native-access=ALL-UNNAMED -J–enable-preview

So that snow-chibi installed library is found

-Dkawa.import.path=/usr/local/share/kawa

-Dkawa.import.path=/usr/local/share/kawa/lib

Mosh >= 0.2.9-rc1

Racket >= 8.16 [cs]

Sagittarius >= 0.9.13

STklos > 2.10

At the time only 2.10 is out so build from git

Primitives 1 table

c-type-size c-bytevector-u8-set! c-bytevector-u8-ref define-c-library c-bytevector? define-c-procedure

Chibi X X X X X X

Chicken X X X X X X

Gauche X X X X X X

Guile X X X X X X

Kawa X X X X X X

Mosh X X X X X X

Racket X X X X X X

Sagittarius X X X X X X

STklos X X X X X X

Ypsilon X X X X X X

Primitives 2 table

define-c-callback

Chibi

Chicken X

Gauche

Guile X

Kawa

Mosh X

Racket X

Saggittarius X

▪

▪

▪

▪

◦

▪

◦

▪

▪

•

•

•

•

◦

define-c-callback

STklos

Ypsilon X

Test files pass

primitives.scm addressof.scm callback.scm

Chibi X X

Chicken X X X

Gauche X X

Guile X X X

Kawa X X

Mosh X X

Racket X

Saggittarius X X X

STklos X X

Ypsilon X X

Installation

Snow-fort

https://snow-fort.org/

snow-chibi –impls=IMPLEMENTATION install “(foreign c)”

You can test that library is found by your implementation like this:

cp tests/hello.scm /tmp/hello.scm

cd /tmp

IMPLEMENTATION hello.scm

Manual

Either download the latest release from https://git.sr.ht/~retropikzel/foreign-

c/refs or git clone, tag, and copy the foreign directory to your library

directory.

Example assuming libraries in directory snow:

git clone https://git.sr.ht/~retropikzel/foreign-c --branch

LATEST_VERSION

cd foreign-c

make SCHEME_IMPLEMENTATION_NAME

cd ..

mkdir -p snow

cp -r foreign-c/foreign snow/

https://snow-fort.org/
https://git.sr.ht/~retropikzel/foreign-c/refs
https://git.sr.ht/~retropikzel/foreign-c/refs

With most implementations the make command does not compile anything.

When that is the case it will say “Nothing to build on

SCHEME_IMPLEMENTATION_NAME.”

Documentation

Types

Types are given as symbols, for example ’int8 or ’pointer.

int8

uint8

int16

uint16

int32

uint32

int64

uint64

char

unsigned-char

short

unsigned-short

int

unsigned-int

long

unsigned-long

float

double

pointer

c-bytevector on Scheme side

callback

Callback function

void

Can not be argument type, only return type

Primitives 1

(c-type-size type)

Returns the size of given C type.

(define-c-library scheme-name headers object-name options)

Takes a scheme-name to bind the library to, list of C headers as strings,

shared-object name and options.

The C header strings should not contain “<” or “>”, they are added

automatically.

The name of the shared object should not contain suffix like .so or .dll. Nor

should it contain any prefix like “lib”.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

◦

•

◦

•

◦

Options:

additional-versions

Search for additional versions of shared object, given shared

object “c” and additional versions “6” “7” on linux the files “libc”,

“libc.6”, “libc.7” are searched for.

Can be either numbers or strings

additional-paths

Give additional paths to search shared objects from

Example:

(define-c-library libc

 (list "stdlib.h")

 libc-name

 '((additional-versions ("" "0" "6"))

 (additional-paths ("."))))

Notes

Do not cond-expand inside the arguments, that might lead to problems

on some implementations.

Do not store options in variables, that might lead to problems on some

implementations.

Pass the headers using quote

As ’(…) and not (list…)

Pass the options using quote

As ’(…) and not (list…)

(define-c-procedure scheme-name shared-object c-name return-type

argument-type)

Takes a scheme-name to bind the C procedure to, shared-object where the

function is looked from, c-name of the function as symbol, return-type and

argument-types.

Defines a new foreign function to be used from Scheme code.

Example:

(define-c-library libc '("stdlib.h") libc-name '("6"))

(define-c-procedure c-puts libc 'puts 'int '(pointer))

(c-puts "Message brought to you by foreign-c!")

Notes

Pass the return-types using quote

As ’(…) and not (list…)

(c-bytevector? obj)

Returns #t if obj is c-bytevector, otherwise returns #f.

•

◦

◦

•

◦

•

•

•

◦

•

◦

•

◦

(c-bytevector-u8-set! c-bytevector k byte)

If K is not a valid index of c-bytevector the behaviour is undefined.

Stores the byte in element k of c-bytevector.

(c-bytevector-u8-ref c-bytevector k)

If K is not a valid index of c-bytevector the behaviour is undefined.

Returns the byte at index k of c-bytevector.

(c-bytevector-pointer-set! c-bytevector k pointer)

If K is not a valid index of c-bytevector the behaviour is undefined.

Stores the pointer(which is also c-bytevector) in element k of c-bytevector.

(c-bytevector-pointer-ref c-bytevector k pointer)

If K is not a valid index of c-bytevector the behaviour is undefined.

Returns the pointer(which is also c-bytevector) at index k of c-bytevector.

Primitives 2

(define-c-callback scheme-name return-type argument-types procedure)

Takes scheme-name to bind the Scheme procedure to, return-type,

argument-types and procedure as in place lambda.

Defines a new Sceme function to be used as callback to C code.

Example:

; Load the shared library

(define-c-library libc-stdlib '("stdlib.h") libc-name '("" "6"))

; Define C function that takes a callback

(define-c-procedure qsort libc-stdlib 'qsort 'void '(pointer int

int callback))

; Define our callback

(define-c-callback compare

 'int

 '(pointer pointer)

 (lambda (pointer-a pointer-b)

 (let ((a (c-bytevector-sint-get pointer-a

(native-endianness) 0))

 (b (c-bytevector-sint-get pointer-b

(native-endianness) 0)))

 (cond ((> a b) 1)

 ((= a b) 0)

 ((< a b) -1)))))

; Create new array of ints to be sorted

(define array (make-c-bytevector (* (c-type-size 'int) 3)))

(c-bytevector-s32-native-set! array (* (c-type-size 'int) 0) 3)

(c-bytevector-s32-native-set! array (* (c-type-size 'int) 1) 2)

(c-bytevector-s32-native-set! array (* (c-type-size 'int) 2) 1)

(display array)

(newline)

;> (3 2 1)

; Sort the array

(qsort array 3 (c-type-size 'int) compare)

(display array)

(newline)

;> (1 2 3)

c-bytevector

Foreign-c c-bytevector interface is copied from R6RS bytevectors, with some

added functionality for C null pointers and manual memory management.

(make-c-null)

Returns a null C pointer.

(c-null? obj)

Returns #t if obj is a null C pointer, otherwise returns #f.

(c-free c-bytevector)

Frees c-bytevector from memory.

(call-with-address-of c-bytevector thunk)

Calls thunk with address pointer of c-bytevector.

Since the support for calling C functions taking pointer address arguments,

ones prefixrd with & in C, varies, some additional ceremony is needed on the

Scheme side.

Example:

Calling from C:

//void func(int** i);

func(&i);

Calling from Scheme:

(define cbv (make-bytevector (c-type-size 'int)))

(call-with-address-of

 cbv

 (lambda (address)

 (func address)))

; Use cbv here

The passed c-bytevector, in example named cbv, should only be used after
call to call-with-addres-of ends.

(bytevector->c-bytevector bytevector)

Returns a newly allocated c-bytevector of the bytes of bytevector.

(c-bytevector->bytevector)

Returns a newly allocated bytevector of the bytes of c-bytevector.

(native-endianness)

Returns the endianness symbol associated implementation’s preferred

endianness (usually that of the underlying machine architecture). This may

be any <endianness symbol>, including a symbol other than big and little.

(make-c-bytevector k)

(make-c-bytevector k fill)

Returns a newly allocated c-bytevector of k bytes.

If the fill argument is missing, the initial contents of the returned c-

bytevector are unspecified.

If the fill argument is present, it’s value must confine to C uint8_t values , it

specifies the initial value for the bytes of the c-bytevector

(c-bytevector-s8-set! c-bytevector k byte)

If k is not a valid index of c-bytevector the behaviour is undefined.

Stores the byte in element k of c-bytevector.

(c-bytevector-s8-ref c-bytevector k)

If k is not a valid index of c-bytevector the behaviour is undefined.

Returns the byte at index k of c-bytevector.

(c-bytevector-char-set! c-bytevector k char)

If k is not a valid index of c-bytevector the behaviour is undefined.

Stores the char in element k of c-bytevector.

(c-bytevector-char-ref c-bytevector k)

If k is not a valid index of c-bytevector the behaviour is undefined.

Returns the char at index k of c-bytevector.

(c-bytevector-uchar-set! c-bytevector k char)

If k is not a valid index of c-bytevector the behaviour is undefined.

Stores the unsigned char in element k of c-bytevector.

(c-bytevector-uchar-ref c-bytevector k)

If k is not a valid index of c-bytevector the behaviour is undefined.

Returns the unsigned char at index k of c-bytevector.

(c-bytevector-uint-ref c-bytevector k endianness size)

(c-bytevector-sint-ref c-bytevector k endianness size)

(c-bytevector-uint-set! c-bytevector k n endianness size)

(c-bytevector-sint-set! c-bytevector k n endianness size)

Size must be a positive exact integer object. If k,…,k + size − 1 is not valid

indices of c-bytevector the behavior is unspecified.

The c-bytevector-uint-ref procedure retrieves the exact integer object

corresponding to the unsigned representation of size size and specified by

endianness at indices k,…,k + size − 1.

The c-bytevector-sint-ref procedure retrieves the exact integer object

corresponding to the two’s-complement representation of size size and

specified by endianness at indices k,…,k + size − 1. For c-bytevector-uint-

set!, n must be an exact integer object in the interval {0,…,256^size − 1}.

The c-bytevector-uint-set! procedure stores the unsigned representation of

size size and specified by endianness into c-bytevector at indices k,…,k +

size − 1.

The . . . -set! procedures return unspecified values.

Examples:

(define cbv (make-c-bytevector (c-type-size 'int)))

(c-bytevector-sint-set! cbv 0 100 (native-endianness) (c-type-

size 'int))

(c-bytevector-sint-ref cbv 0 (native-endianness) (c-type-size

'int))

> 100

(c-bytevector-u16-ref c-bytevector k endianness)

(c-bytevector-s16-ref c-bytevector k endianness)

(c-bytevector-u16-native-ref c-bytevector k)

(c-bytevector-s16-native-ref c-bytevector k)

(c-bytevector-u16-set! c-bytevector k n endianness)

(c-bytevector-s16-set! c-bytevector k n endianness)

(c-bytevector-u16-native-set! c-bytevector k n)

(c-bytevector-s16-native-set! c-bytevector k n)

K must be a valid index of c-bytevector ; so must k + 1. For c-bytevector-

u16-set! and c-bytevector-u16-native-set!, n must be an exact integer object

in the interval {0,…,216 − 1}. For c-bytevector-s16-set! and c-bytevector-

s16-native-set!, n must be an exact integer object in the interval {−215,…,

215 − 1}.

These retrieve and set two-byte representations of numbers at indices k and

k + 1, according to the endianness specified by endianness. The procedures

with u16 in their names deal with the unsigned representation; those with

s16 in their names deal with the two’s-complement representation.

The procedures with native in their names employ the native endianness,

and work only at aligned indices: k must be a multiple of 2.

The …-set! procedures return unspecified values.

(c-bytevector-u32-ref c-bytevector k endianness)

(c-bytevector-s32-ref c-bytevector k endianness)

(c-bytevector-u32-native-ref c-bytevector k)

(c-bytevector-s32-native-ref c-bytevector k)

(c-bytevector-u32-set! c-bytevector k n endianness)

(c-bytevector-s32-set! c-bytevector k n endianness)

(c-bytevector-u32-native-set! c-bytevector k n)

(c-bytevector-s32-native-set! c-bytevector k n)

K,…,k + 3 must be valid indices of bytevector. For c-bytevector-u32-set! and

bytevector-u32-native-set!, n must be an exact integer object in the interval

{0,…,232 − 1}. For bytevector-s32-set! and bytevector-s32-native-set!, n

must be an exact integer object in the interval {−231,…,232 − 1}.

These retrieve and set four-byte representations of numbers at indices k,…,k

+ 3, according to the endianness specified by endianness. The procedures

with u32 in their names deal with the unsigned representation; those with

s32 with the two’s-complement representation.

The procedures with native in their names employ the native endianness,

and work only at aligned indices: k must be a multiple of 4.

The …-set! procedures return unspecified values.

(c-bytevector-u64-ref c-bytevector k endianness)

(c-bytevector-s64-ref c-bytevector k endianness)

(c-bytevector-u64-native-ref c-bytevector k)

(c-bytevector-s64-native-ref c-bytevector k)

(c-bytevector-u64-set! c-bytevector k n endianness)

(c-bytevector-s64-set! c-bytevector k n endianness)

(c-bytevector-u64-native-set! c-bytevector k n)

(c-bytevector-s64-native-set! c-bytevector k n)

K,…,k + 7 must be valid indices of c-bytevector. For c-bytevector-u64-set!

and c-bytevector-u64-native-set!, n must be an exact integer object in the

interval {0,…,264 − 1}. For c-bytevector-s64-set! and c-bytevector-s64-

native-set!, n must be an exact integer object in the interval {−263,…,264 −

1}.

These retrieve and set eight-byte representations of numbers at indices

k,…,k + 7, according to the endianness specified by endianness. The

procedures with u64 in their names deal with the unsigned representation;

those with s64 with the two’s-complement representation.

The procedures with native in their names employ the native endianness,

and work only at aligned indices: k must be a multiple of 8.

The …-set! procedures return unspecified values.

(c-bytevector-ieee-single-native-ref)
(c-bytevector-ieee-single-ref)

K,…,k + 3 must be valid indices of c-bytevector. For c-bytevector-ieee-single-

native-ref, k must be a multiple of 4.

These procedures return the inexact real number object that best represents

the IEEE-754 single-precision number represented by the four bytes

beginning at index k.

(c-bytevector-ieee-double-native-ref)
(c-bytevector-ieee-double-ref)

K,…,k + 7 must be valid indices of c-bytevector. For c-bytevector-ieee-

double-native-ref, k must be a multiple of 8.

These procedures return the inexact real number object that best represents

the IEEE-754 double-precision number represented by the eight bytes

beginning at index k.

(c-bytevector-ieee-single-native-set!)
(c-bytevector-ieee-single-set!)

K,…,k + 3 must be valid indices of c-bytevector. For c-bytevector-ieee-single-

native-set!, k must be a multiple of 4.

These procedures store an IEEE-754 single-precision representation of x

into elements k through k + 3 of bytevector, and return unspecified values.

(c-bytevector-ieee-double-native-set!)
(c-bytevector-ieee-double-set!)

K,…,k + 7 must be valid indices of bytevector. For c-bytevector-ieee-double-

native-set!, k must be a multiple of 8.

These procedures store an IEEE-754 double-precision representation of x

into elements k through k + 7 of bytevector, andreturn unspecified values.

(string->c-utf8 string)

Returns a newly allocated (unless empty) c-bytevector that contains the

UTF-8 encoding of the given string.

(c-utf8->string c-bytevector)

Returns a newly allocated (unless empty) string whose character sequence

is encoded by the given c-bytevector.

Utilities

libc-name

Name of the C standard library on the current operating system. Supported

OS:

Windows

Linux

Haiku

See foreign/c/libc.scm to see which headers are included and what shared

libraries are loaded.

Example:

(define-c-library libc '("stdlib.h") libc-name '("" "6"))

(define-c-procedure c-puts libc 'puts 'int '(pointer))

(c-puts "Message brought to you by foreign-c!")

Environment variables

Setting environment variables like this on Windows works for this library:

set "FOREIGN_C_LOAD_PATH=C:\Program Files (x86)/foo/bar"

FOREIGN_C__LOAD_PATH

To add more paths to where foreign c looks for libraries set

FOREIGN_C_LOAD_PATH to paths separated by ; on windows, and : on other

operating systems.

•

•

•

	foreign-c a portable foreign function interface for R7RS Schemes
	foreign-c
	Implementation support tables
	Primitives 1 table
	Primitives 2 table
	Test files pass

	Installation
	Snow-fort
	Manual

	Documentation
	Types
	Primitives 1
	Notes
	Notes

	Primitives 2
	c-bytevector
	Utilities
	Environment variables
	FOREIGN_C__LOAD_PATH

