foreign-c a portable foreign
function interface for R7RS
Schemes

foreign-c

foreign-c is a C foreign function interface (FFI) library for R7RS Schemes. It
is portable in the sense that it supports multiple implementations, as
opposed to being portable by conforming to some specification.

Issue tracker
Maling lists

D mentation

E

Primitives 1

m c-type-size
m define-c-library
m define-c-procedure
m c-bytevector?
m c-bytevector-u8-set!
m c-bytevector-u8-ref
m c-bytevector-pointer-set!
m c-bytevector-pointer-ref

o Primitives 2
m define-c-callback
m make-c-null
m c-null?
m c-free
m make-c-bytevector
m call-with-address-of
m native-endianness
m c-bytevector-s8-set!
m c-bytevector-s8-ref
m c-bytevector-s16-set!
m c-bytevector-s16-ref
m c-bytevector-s16-native-set!
m c-bytevector-s16-native-ref
m c-bytevector-ul6-set!
m c-bytevector-ul6-ref
m c-bytevector-ul6-native-set!
m c-bytevector-ul6-native-ref


https://sr.ht/~retropikzel/foreign-c/trackers
https://sr.ht/~retropikzel/foreign-c/lists
https://jenkins.scheme.org/job/foreign_c/job/foreign-c/

m c-bytevector-s32-set!
m c-bytevector-s32-ref
m c-bytevector-s32-native-set!
m c-bytevector-s32-native-ref
m c-bytevector-u32-set!
m c-bytevector-u32-ref
m c-bytevector-u32-native-set!
m c-bytevector-u32-native-ref
m c-bytevector-s64-set!
m c-bytevector-s64-ref
m c-bytevector-s64-native-set!
m c-bytevector-s64-native-ref
m c-bytevector-u64-set!
m c-bytevector-u64-ref
m c-bytevector-u64-native-set!
m c-bytevector-u64-native-ref
m c-bytevector-sint-set!
m c-bytevector-sint-ref
m c-bytevector-uint-set!
m c-bytevector-uint-ref
m c-bytevector-ieee-single-set!
m c-bytevector-ieee-single-native-set!
m c-bytevector-ieee-single-ref
m c-bytevector-ieee-single-native-ref
m c-bytevector-ieee-double-set!
m c-bytevector-ieee-double-native-set!
m c-bytevector-ieee-double-ref
m c-bytevector-ieee-double-native-ref
m bytevector->c-bytevector
m c-bytevector->bytevector
m string->c-utf8
m c-utf8->string
o Environment variabl

Implementation support tables

Required versions:

e Chibi > 0.11

o At the only 0.11 is out so build from git
e Chicken >=5.4.0 <6
* Gauche >= 0.9.15

o Does not yet work with snow-chibi install
* Guile >= 3

o Does not yet work with snow-chibi install

o Has include bug, might not work on all situations
* Kawa >= 3.11 and Java >= 22

o Needs arguments to enable FFI

m -J-add-exports=java.base/jdk.internal.foreign.abi=ALL-
UNNAMED



m -J-add-exports=java.base/jdk.internal.foreign.layout=ALL-
UNNAMED
m -J-add-exports=java.base/jdk.internal.foreign=ALL-
UNNAMED
m -J-enable-native-access=ALL-UNNAMED
m -J-enable-preview
o All needed arguments on one line for copy pasting
m -J-add-exports=java.base/jdk.internal.foreign.abi=ALL-
UNNAMED -J-add-exports=java.base/
jdk.internal.foreign.layout=ALL-UNNAMED -J-add-
exports=java.base/jdk.internal.foreign=ALL-UNNAMED -J-
enable-native-access=ALL-UNNAMED -J-enable-preview
o So that snow-chibi installed library is found
m -Dkawa.import.path=/usr/local/share/kawa
m -Dkawa.import.path=/usr/local/share/kawa/lib
* Mosh >= 0.2.9-rcl
* Racket >= 8.16 [cs]
* Sagittarius >= 0.9.13
e STklos > 2.10
o At the time only 2.10 is out so build from git

Primitives 1 table

c-type-size c-bytevector-u8-set!
Chibi X X
Chicken X X
Gauche X X
Guile X X
Kawa X X
Mosh X X
Racket X X
Sagittarius X X
STklos X X
Ypsilon X X

Primitives 2 table

Chibi
Chicken
Gauche
Guile

Kawa

Mosh
Racket
Saggittarius

c-byt



STklos
Ypsilon

Test files pass

primitives.scm
Chibi
Chicken
Gauche
Guile
Kawa
Mosh
Racket
Saggittarius
STklos
Ypsilon

T BRI S i Sl I SIS

Installation

Snow-fort

https://snow-fort.org/
snow-chibi -impls=IMPLEMENTATION install “(foreign c)”

You can test that library is found by your implementation like this:

cp tests/hello.scm /tmp/hello.scm
cd /tmp
IMPLEMENTATION hello.scm

Manual

Either download the latest release from https://git.sr.ht/~retropikzel/foreign-
c/refs or git clone, tag, and copy the foreign directory to your library

directory.
Example assuming libraries in directory snow:

git clone https://git.sr.ht/~retropikzel/foreign-c --branch
LATEST VERSION

cd foreign-c

make SCHEME IMPLEMENTATION NAME

cd ..

mkdir -p snow

cp -r foreign-c/foreign snow/


https://snow-fort.org/
https://git.sr.ht/~retropikzel/foreign-c/refs
https://git.sr.ht/~retropikzel/foreign-c/refs

With most implementations the make command does not compile anything.
When that is the case it will say “Nothing to build on
SCHEME IMPLEMENTATION NAME.”

Documentation
Types

Types are given as symbols, for example ’int8 or 'pointer.

int8
uint8
intl6
uint16
int32
uint32
int64
uinto4
char
unsigned-char
short
unsigned-short
int
unsigned-int
long
unsigned-long
float
double
pointer

o c-bytevector on Scheme side
* callback

o Callback function

* void
o Can not be argument type, only return type

Primitives 1

(c-type-size type)

Returns the size of given C type.

(define-c-library scheme-name headers object-name options)

Takes a scheme-name to bind the library to, list of C headers as strings,
shared-object name and options.

The C header strings should not contain “<” or “>”, they are added
automatically.

The name of the shared object should not contain suffix like .so or .dll. Nor
should it contain any prefix like “lib”.



Options:

» additional-versions
o Search for additional versions of shared object, given shared
object “c” and additional versions “6” “7” on linux the files “libc”,
“libc.6”, “libc.7” are searched for.
o Can be either numbers or strings
* additional-paths
o Give additional paths to search shared objects from

Example:

(define-c-library libc
(list "stdlib.h")
libc-name
'((additional-versions ("" "O0" "6"))
(additional-paths ("."))))

Notes

* Do not cond-expand inside the arguments, that might lead to problems
on some implementations.
* Do not store options in variables, that might lead to problems on some
implementations.
* Pass the headers using quote
o As ’(...) and not (list...)
» Pass the options using quote
° As ’(...) and not (list...)

(define-c-procedure scheme-name shared-object c-name return-type
argument-type)

Takes a scheme-name to bind the C procedure to, shared-object where the
function is looked from, c-name of the function as symbol, return-type and
argument-types.

Defines a new foreign function to be used from Scheme code.

Example:

(define-c-library libc '("stdlib.h") libc-name '("6")

)
(define-c-procedure c-puts libc 'puts 'int '(pointer))
(c-puts "Message brought to you by foreign-c!")

Notes

* Pass the return-types using quote
o As ’(...) and not (list...)

(c-bytevector? obj)

Returns #t if obj is c-bytevector, otherwise returns #f.



(c-bytevector-u8-set! c-bytevector k byte)

If K is not a valid index of c-bytevector the behaviour is undefined.
Stores the byte in element k of c-bytevector.
(c-bytevector-u8-ref c-bytevector k)

If K is not a valid index of c-bytevector the behaviour is undefined.
Returns the byte at index k of c-bytevector.
(c-bytevector-pointer-set! c-bytevector k pointer)

If K is not a valid index of c-bytevector the behaviour is undefined.
Stores the pointer(which is also c-bytevector) in element k of c-bytevector.
(c-bytevector-pointer-ref c-bytevector k pointer)

If K is not a valid index of c-bytevector the behaviour is undefined.

Returns the pointer(which is also c-bytevector) at index k of c-bytevector.
Primitives 2

(define-c-callback scheme-name return-type argument-types procedure)

Takes scheme-name to bind the Scheme procedure to, return-type,
argument-types and procedure as in place lambda.

Defines a new Sceme function to be used as callback to C code.
Example:

; Load the shared library
(define-c-library libc-stdlib '("stdlib.h") libc-name '("" "6"))

; Define C function that takes a callback
(define-c-procedure gsort libc-stdlib 'qsort 'void '(pointer int
int callback))

; Define our callback
(define-c-callback compare
"int
'(pointer pointer)
(lambda (pointer-a pointer-b)
(let ((a (c-bytevector-sint-get pointer-a
(native-endianness) 0))
(b (c-bytevector-sint-get pointer-b
(native-endianness) 0)))



; Create new array of ints to be sorted

(define array (make-c-bytevector (* (c-type-size 'int) 3)))
(c-bytevector-s32-native-set! array (* (c-type-size 'int) 0) 3)
(c-bytevector-s32-native-set! array (* (c-type-size 'int) 1) 2)
(c-bytevector-s32-native-set! array (* (c-type-size 'int) 2) 1)
(display array)

(newline)

;> (3 21)

; Sort the array
(gsort array 3 (c-type-size 'int) compare)

(display array)

(newline)
> (1 2 3)

c-bytevector

Foreign-c c-bytevector interface is copied from R6RS bytevectors, with some
added functionality for C null pointers and manual memory management.

(make-c-null)

Returns a null C pointer.

(c-null? obj)

Returns #t if obj is a null C pointer, otherwise returns #f.
(c-free c-bytevector)

Frees c-bytevector from memory.

(call-with-address-of c-bytevector thunk)

Calls thunk with address pointer of c-bytevector.

Since the support for calling C functions taking pointer address arguments,
ones prefixrd with & in C, varies, some additional ceremony is needed on the
Scheme side.

Example:
Calling from C:

//void func(int** 1);
func(&i);

Calling from Scheme:



(define cbv (make-bytevector (c-type-size 'int)))
(call-with-address-of
cbv
(lambda (address)
(func address)))
; Use cbv here

The passed c-bytevector, in example named cbv, should only be used after
call to call-with-addres-of ends.

(bytevector->c-bytevector bytevector)

Returns a newly allocated c-bytevector of the bytes of bytevector.
(c-bytevector->bytevector)

Returns a newly allocated bytevector of the bytes of c-bytevector.
(native-endianness)

Returns the endianness symbol associated implementation’s preferred
endianness (usually that of the underlying machine architecture). This may
be any <endianness symbol>, including a symbol other than big and little.

(make-c-bytevector k)
(make-c-bytevector k fill)

Returns a newly allocated c-bytevector of k bytes.

If the fill argument is missing, the initial contents of the returned c-
bytevector are unspecified.

If the fill argument is present, it’s value must confine to C uint8 t values, it
specifies the initial value for the bytes of the c-bytevector

(c-bytevector-s8-set! c-bytevector k byte)

If k is not a valid index of c-bytevector the behaviour is undefined.
Stores the byte in element k of c-bytevector.
(c-bytevector-s8-ref c-bytevector k)

If k is not a valid index of c-bytevector the behaviour is undefined.
Returns the byte at index k of c-bytevector.
(c-bytevector-char-set! c-bytevector k char)

If k is not a valid index of c-bytevector the behaviour is undefined.
Stores the char in element k of c-bytevector.

(c-bytevector-char-ref c-bytevector k)



If k is not a valid index of c-bytevector the behaviour is undefined.
Returns the char at index k of c-bytevector.
(c-bytevector-uchar-set! c-bytevector k char)

If k is not a valid index of c-bytevector the behaviour is undefined.
Stores the unsigned char in element k of c-bytevector.
(c-bytevector-uchar-ref c-bytevector k)

If k is not a valid index of c-bytevector the behaviour is undefined.
Returns the unsigned char at index k of c-bytevector.

(c-bytevector-uint-ref c-bytevector k endianness size)
(c-bytevector-sint-ref c-bytevector k endianness size)
(c-bytevector-uint-set! c-bytevector k n endianness size)
(c-bytevector-sint-set! c-bytevector k n endianness size)

Size must be a positive exact integer object. If k,...,k + size — 1 is not valid
indices of c-bytevector the behavior is unspecified.

The c-bytevector-uint-ref procedure retrieves the exact integer object
corresponding to the unsigned representation of size size and specified by
endianness at indices k,...,k + size — 1.

The c-bytevector-sint-ref procedure retrieves the exact integer object
corresponding to the two’s-complement representation of size size and
specified by endianness at indices k, ...,k + size — 1. For c-bytevector-uint-
set!, n must be an exact integer object in the interval {0,...,256"size — 1}.

The c-bytevector-uint-set! procedure stores the unsigned representation of
size size and specified by endianness into c-bytevector at indices k,...,.k +
size — 1.

The . . . -set! procedures return unspecified values.
Examples:

(define cbv (make-c-bytevector (c-type-size 'int)))
(c-bytevector-sint-set! cbv 0 100 (native-endianness) (c-type-
size 'int))

(c-bytevector-sint-ref cbv 0 (native-endianness) (c-type-size
'int))

> 100

(c-bytevector-ul6-ref c-bytevector k endianness)
(c-bytevector-s16-ref c-bytevector k endianness)
(c-bytevector-ul6-native-ref c-bytevector k)
(c-bytevector-s16-native-ref c-bytevector k)
(c-bytevector-ul6-set! c-bytevector k n endianness)
(c-bytevector-s16-set! c-bytevector k n endianness)



(c-bytevector-ul6-native-set! c-bytevector k n)
(c-bytevector-s16-native-set! c-bytevector k n)

K must be a valid index of c-bytevector ; so must k + 1. For c-bytevector-
ul6-set! and c-bytevector-ul6-native-set!, n must be an exact integer object
in the interval {0,...,216 — 1}. For c-bytevector-s16-set! and c-bytevector-
s16-native-set!, n must be an exact integer object in the interval {—215,...,
215 - 1}.

These retrieve and set two-byte representations of numbers at indices k and
k + 1, according to the endianness specified by endianness. The procedures
with ul6 in their names deal with the unsigned representation; those with
s16 in their names deal with the two’s-complement representation.

The procedures with native in their names employ the native endianness,
and work only at aligned indices: k must be a multiple of 2.

The ...-set! procedures return unspecified values.

(c-bytevector-u32-ref c-bytevector k endianness)
(c-bytevector-s32-ref c-bytevector k endianness)
(c-bytevector-u32-native-ref c-bytevector k)
(c-bytevector-s32-native-ref c-bytevector k)
(c-bytevector-u32-set! c-bytevector k n endianness)
(c-bytevector-s32-set! c-bytevector k n endianness)
(c-bytevector-u32-native-set! c-bytevector k n)
(c-bytevector-s32-native-set! c-bytevector k n)

K,...,k + 3 must be valid indices of bytevector. For c-bytevector-u32-set! and
bytevector-u32-native-set!, n must be an exact integer object in the interval
{0,...,232 — 1}. For bytevector-s32-set! and bytevector-s32-native-set!, n
must be an exact integer object in the interval {-231,...,232 — 1}.

These retrieve and set four-byte representations of numbers at indices k, ...,k
+ 3, according to the endianness specified by endianness. The procedures
with u32 in their names deal with the unsigned representation; those with
s32 with the two’s-complement representation.

The procedures with native in their names employ the native endianness,
and work only at aligned indices: k must be a multiple of 4.

The ...-set! procedures return unspecified values.

(c-bytevector-u64-ref c-bytevector k endianness)
(c-bytevector-s64-ref c-bytevector k endianness)
(c-bytevector-u64-native-ref c-bytevector k)
(c-bytevector-s64-native-ref c-bytevector k)
(c-bytevector-u64-set! c-bytevector k n endianness)
(c-bytevector-s64-set! c-bytevector k n endianness)
(c-bytevector-u64-native-set! c-bytevector k n)
(c-bytevector-s64-native-set! c-bytevector k n)



K,...,k + 7 must be valid indices of c-bytevector. For c-bytevector-u64-set!
and c-bytevector-u64-native-set!, n must be an exact integer object in the
interval {0,...,264 — 1}. For c-bytevector-s64-set! and c-bytevector-s64-
native-set!, n must be an exact integer object in the interval {—263,...,264 —

1}.

These retrieve and set eight-byte representations of numbers at indices
k,....k + 7, according to the endianness specified by endianness. The
procedures with u64 in their names deal with the unsigned representation;
those with s64 with the two’s-complement representation.

The procedures with native in their names employ the native endianness,
and work only at aligned indices: k must be a multiple of 8.

The ...-set! procedures return unspecified values.

(c-bytevector-ieee-single-native-ref)
(c-bytevector-ieee-single-ref)

K,...,k + 3 must be valid indices of c-bytevector. For c-bytevector-ieee-single-
native-ref, k must be a multiple of 4.

These procedures return the inexact real number object that best represents
the IEEE-754 single-precision number represented by the four bytes
beginning at index k.

(c-bytevector-ieee-double-native-ref)
(c-bytevector-ieee-double-ref)

K,...,k + 7 must be valid indices of c-bytevector. For c-bytevector-ieee-
double-native-ref, k must be a multiple of 8.

These procedures return the inexact real number object that best represents
the IEEE-754 double-precision number represented by the eight bytes
beginning at index k.

(c-bytevector-ieee-single-native-set!)
(c-bytevector-ieee-single-set!)

K,...,k + 3 must be valid indices of c-bytevector. For c-bytevector-ieee-single-
native-set!, k must be a multiple of 4.

These procedures store an IEEE-754 single-precision representation of x
into elements k through k + 3 of bytevector, and return unspecified values.

(c-bytevector-ieee-double-native-set!)
(c-bytevector-ieee-double-set!)

K,...,k + 7 must be valid indices of bytevector. For c-bytevector-ieee-double-
native-set!, k must be a multiple of 8.

These procedures store an IEEE-754 double-precision representation of x
into elements k through k + 7 of bytevector, andreturn unspecified values.



(string->c-utf8 string)

Returns a newly allocated (unless empty) c-bytevector that contains the
UTF-8 encoding of the given string.

(c-utf8->string c-bytevector)

Returns a newly allocated (unless empty) string whose character sequence
is encoded by the given c-bytevector.

Utilities
libc-name

Name of the C standard library on the current operating system. Supported
OS:

e Windows
¢ Linux
e Haiku

See foreign/c/libc.scm to see which headers are included and what shared
libraries are loaded.

Example:
(define-c-library libc '("stdlib.h") libc-name '("" "6"))

(define-c-procedure c-puts libc 'puts 'int '(pointer))
(c-puts "Message brought to you by foreign-c!")

Environment variables
Setting environment variables like this on Windows works for this library:
set "FOREIGN C LOAD PATH=C:\Program Files (x86)/foo/bar"

FOREIGN C__LOAD PATH

To add more paths to where foreign c looks for libraries set
FOREIGN C LOAD PATH to paths separated by ; on windows, and : on other
operating systems.



	foreign-c a portable foreign function interface for R7RS Schemes
	foreign-c
	Implementation support tables
	Primitives 1 table
	Primitives 2 table
	Test files pass

	Installation
	Snow-fort
	Manual

	Documentation
	Types
	Primitives 1
	Notes
	Notes

	Primitives 2
	c-bytevector
	Utilities
	Environment variables
	FOREIGN_C__LOAD_PATH




