foreign-c a portable foreign
function interface for R7RS

foreign-c

foreign-c is a C foreign function interface (FFI) library for R7RS. It is
portable in the sense that it supports multiple implementations, as opposed
to being portable by conforming to some specification.
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Implementation support tables

Primitives 1

c-size-of c-bytevector-u8-set!
Chibi X X
Chicken X X
Gauche X X
Guile X X
Kawa X X
Mosh X X
Racket X X
Saggittarius X X
Stklos X X
Ypsilon X X

Primitives 2

Chibi


https://todo.sr.ht/~retropikzel/r7rs-pffi
https://sr.ht/~retropikzel/r7rs-pffi/trackers
https://sr.ht/~retropikzel/r7rs-pffi/lists
https://jenkins.scheme.org/job/r7rs_pffi/job/r7rs-pffi/
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Guile

Kawa

Mosh
Racket
Saggittarius
Stklos
Ypsilon

Test files pass
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Installation

primitives.scm

IS TS I I Sl i S

Either download the latest release from https://git.sr.ht/~retropikzel/foreign-
c/refs or git clone , preferably with a tag, and copy the “foreign” directory to

your library directory.

As an example assuming you have a project and your libraries live in

directory called snow in it:

git clone https://git.sr.ht/~retropikzel/foreign-c --branch

LATEST_VERSION
mkdir -p snow

cp -r foreign-c/foreign snow/
make -C snow/foreign/c <SCHEME_IMPLEMENTATION_NAME>

With most implementations the make command does not compile anything.

When that is the case it will say “Nothing to build on
SCHEME IMPLEMENTATION NAME.”


https://git.sr.ht/~retropikzel/foreign-c/refs
https://git.sr.ht/~retropikzel/foreign-c/refs

Documentation

Types
Types are given as symbols, for example ’int8 or 'pointer.

int8
uint8
intl6
uint16
int32
uint32
int64
uinto4
char
unsigned-char
short
unsigned-short
int
unsigned-int
long
unsigned-long
float
double
pointer
callback

o Callback function

Primitives

(c-type-size type)

Returns the size of given C type.

(define-c-library scheme-name headers object-name options)

Takes a scheme-name to bind the library to, list of C headers as strings,
shared-object name and options.

The C header strings should not contain “<” or “>”, they are added
automatically.

The name of the shared object should not contain suffix like .so or .dll. Nor
should it contain any prefix like “lib”.

The options are:

* additional-versions
o Search for additional versions of shared object, given shared
object “c” and additional versions “6” “7” on linux the files “libc”,
“libc.6”, “libc.7” are searched for.
o Can be either numbers or strings



* additional-paths
o Give additional paths to search shared objects from

Example:

(cond-expand
(windows (define-c-library libc-stdlib
"("stdlib.h")
"ucrtbase"
"((additional-versions ("@" "6"))
(additiona-paths (".")))))
(else (define-c-library libc-stdlib
(list "stdlib.h")
nen
'"((additional-versions ("@" "6"))
(additiona-paths ("."))))))

Notes

* Do not cond-expand inside the arguments, that might lead to problems
on some implementations.
* Do not store options in variables, that might lead to problems on some
implementations.
* Do pass the headers using quote
o As ’(... and not (list...
* Do pass the options using quote
o As ’(... and not (list... define-c-procedure define-c-callback c-
bytevector? c-bytevector-u8-set! c-bytevector-u8-ref c-bytevector-
pointer-set! c-bytevector-pointer-ref

c-bytevector

make-c-bytevector make-c-null c-null? c-free native-endianness c-bytevector-
s8-set! c-bytevector-s8-ref c-bytevector-s16-set! c-bytevector-s16-ref c-
bytevector-s16-native-set! c-bytevector-s16-native-ref c-bytevector-ul6-set!
c-bytevector-ul6-ref c-bytevector-ul 6-native-set! c-bytevector-ul6-native-ref
c-bytevector-s32-set! c-bytevector-s32-ref c-bytevector-s32-native-set! c-
bytevector-s32-native-ref c-bytevector-u32-set! c-bytevector-u32-ref c-
bytevector-u32-native-set! c-bytevector-u32-native-ref c-bytevector-s64-set!
c-bytevector-s64-ref c-bytevector-s64-native-set! c-bytevector-s64-native-ref
c-bytevector-u64-set! c-bytevector-u64-ref c-bytevector-u64-native-set! c-
bytevector-u64-native-ref c-bytevector-sint-set! c-bytevector-sint-ref c-
bytevector-uint-set! c-bytevector-uint-ref c-bytevector-ieee-single-set! c-
bytevector-ieee-single-native-set! c-bytevector-ieee-single-ref c-bytevector-
ieee-single-native-ref c-bytevector-ieee-double-set! c-bytevector-ieee-double-
native-set! c-bytevector-ieee-double-ref c-bytevector-ieee-double-native-ref
bytevector->c-bytevector c-bytevector->bytevector call-with-address-of

string->c-utf8 c-utf8->string



Environment variables

Setting environment variables like this on Windows works for this library:
set "PFFI_LOAD_PATH=C:\Program Files (x86)/foo/bar"

PFFI_LOAD PATH

To add more paths to where pffi looks for libraries set PFFI LOAD PATH to
paths separated by ; on windows, and : on other operating systems.
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