foreign-c a portable foreign
function interface for R7RS

foreign-c

foreign-c is a C foreign function interface (FFI) library for R7RS. It is
portable in the sense that it supports multiple implementations, as opposed
to being portable by conforming to some specification.

Project

Issue trackers
Maling lists
Jenkins

- AY r

Implementation support tables

Primitives 1

c-size-of c-bytevector-u8-set!
Chibi X X
Chicken X X
Gauche X X
Guile X X
Kawa X X
Mosh X X
Racket X X
Saggittarius X X
Stklos X X
Ypsilon X X

Primitives 2

Chibi


https://todo.sr.ht/~retropikzel/r7rs-pffi
https://sr.ht/~retropikzel/r7rs-pffi/trackers
https://sr.ht/~retropikzel/r7rs-pffi/lists
https://jenkins.scheme.org/job/r7rs_pffi/job/r7rs-pffi/

Chicken
Gauche
Guile

Kawa

Mosh
Racket
Saggittarius
Stklos
Ypsilon

Test files pass

Chibi
Chicken
Gauche
Guile

Kawa

Mosh

Racket
Saggittarius
Stklos
Ypsilon

Installation

primitives.scm

IS TS I I Sl i S

Either download the latest release from https://git.sr.ht/~retropikzel/foreign-
c/refs or git clone , preferably with a tag, and copy the “foreign” directory to

your library directory.

As an example assuming you have a project and your libraries live in

directory called snow in it:

git clone https://git.sr.ht/~retropikzel/foreign-c --branch

LATEST_VERSION
mkdir -p snow

cp -r foreign-c/foreign snow/
make -C snow/foreign/c <SCHEME_IMPLEMENTATION_NAME>

With most implementations the make command does not compile anything.

When that is the case it will say “Nothing to build on
SCHEME IMPLEMENTATION NAME.”


https://git.sr.ht/~retropikzel/foreign-c/refs
https://git.sr.ht/~retropikzel/foreign-c/refs

Documentation

Types
Types are given as symbols, for example ’int8 or 'pointer.

int8
uint8
intl6
uint16
int32
uint32
int64
uinto4
char
unsigned-char
short
unsigned-short
int
unsigned-int
long
unsigned-long
float
double
pointer
callback

o Callback function

Primitives

(c-type-size type)

Returns the size of given C type.

(define-c-library scheme-name headers object-name options)

Takes a scheme-name to bind the library to, list of C headers as strings,
shared-object name and options.

The C header strings should not contain “<” or “>”, they are added
automatically.

The name of the shared object should not contain suffix like .so or .dll. Nor
should it contain any prefix like “lib”.

The options are:

* additional-versions
o Search for additional versions of shared object, given shared
object “c” and additional versions “6” “7” on linux the files “libc”,
“libc.6”, “libc.7” are searched for.
o Can be either numbers or strings



* additional-paths
o Give additional paths to search shared objects from

Example:

(cond-expand
(windows (define-c-library libc-stdlib
"("stdlib.h")
"ucrtbase"
"((additional-versions ("@" "6"))
(additiona-paths (".")))))
(else (define-c-library libc-stdlib
(list "stdlib.h")
nen
'"((additional-versions ("@" "6"))
(additiona-paths ("."))))))

Notes

* Do not cond-expand inside the arguments, that might lead to problems
on some implementations.
* Do not store options in variables, that might lead to problems on some
implementations.
* Do pass the headers using quote
o As ’(... and not (list...
* Do pass the options using quote
o As ’(... and not (list... define-c-procedure define-c-callback c-
bytevector? c-bytevector-u8-set! c-bytevector-u8-ref c-bytevector-
pointer-set! c-bytevector-pointer-ref

c-bytevector

make-c-bytevector make-c-null c-null? c-free native-endianness c-bytevector-
s8-set! c-bytevector-s8-ref c-bytevector-s16-set! c-bytevector-s16-ref c-
bytevector-s16-native-set! c-bytevector-s16-native-ref c-bytevector-ul6-set!
c-bytevector-ul6-ref c-bytevector-ul 6-native-set! c-bytevector-ul6-native-ref
c-bytevector-s32-set! c-bytevector-s32-ref c-bytevector-s32-native-set! c-
bytevector-s32-native-ref c-bytevector-u32-set! c-bytevector-u32-ref c-
bytevector-u32-native-set! c-bytevector-u32-native-ref c-bytevector-s64-set!
c-bytevector-s64-ref c-bytevector-s64-native-set! c-bytevector-s64-native-ref
c-bytevector-u64-set! c-bytevector-u64-ref c-bytevector-u64-native-set! c-
bytevector-u64-native-ref c-bytevector-sint-set! c-bytevector-sint-ref c-
bytevector-uint-set! c-bytevector-uint-ref c-bytevector-ieee-single-set! c-
bytevector-ieee-single-native-set! c-bytevector-ieee-single-ref c-bytevector-
ieee-single-native-ref c-bytevector-ieee-double-set! c-bytevector-ieee-double-
native-set! c-bytevector-ieee-double-ref c-bytevector-ieee-double-native-ref
bytevector->c-bytevector c-bytevector->bytevector call-with-address-of

string->c-utf8 c-utf8->string



Environment variables

Setting environment variables like this on Windows works for this library:
set "PFFI_LOAD_PATH=C:\Program Files (x86)/foo/bar"

PFFI_LOAD PATH

To add more paths to where pffi looks for libraries set PFFI LOAD PATH to
paths separated by ; on windows, and : on other operating systems.



	foreign-c a portable foreign function interface for R7RS
	foreign-c
	Implementation support tables
	Primitives 1
	Primitives 2
	Test files pass
	Installation

	Documentation
	Types
	Primitives
	Notes

	c-bytevector
	Environment variables
	PFFI_LOAD_PATH




