foreign-c a portable foreign
function interface for R7RS
Schemes

foreign-c

foreign-c is a C foreign function interface (FFI) library for R7RS Schemes. It
is portable in the sense that it supports multiple implementations, as
opposed to being portable by conforming to some specification.

Issue tracker

Maling lists

* Installation
D mentation

o Types

o Primitives 1
m c-type-size
m define-c-library
m define-c-procedure
m c-bytevector?
m c-bytevector-u8-set!
m c-bytevector-u8-ref
m c-bytevector-pointer-set!
m c-bytevector-pointer-ref

o Primitives 2
m define-c-callback
m make-c-null
m c-null?
m c-free
m make-c-bytevector
m call-with-address-of
m native-endianness
m c-bytevector-s8-set!
m c-bytevector-s8-ref
m c-bytevector-s16-set!
m c-bytevector-s16-ref
m c-bytevector-s16-native-set!
m c-bytevector-s16-native-ref
m c-bytevector-ul6-set!
m c-bytevector-ul6-ref
m c-bytevector-ul6-native-set!
m c-bytevector-ul6-native-ref
m c-bytevector-s32-set!
m c-bytevector-s32-ref

https://sr.ht/~retropikzel/foreign-c/trackers
https://sr.ht/~retropikzel/foreign-c/lists

m c-bytevector-s32-native-set!
m c-bytevector-s32-native-ref
m c-bytevector-u32-set!
m c-bytevector-u32-ref
m c-bytevector-u32-native-set!
m c-bytevector-u32-native-ref
m c-bytevector-s64-set!
m c-bytevector-s64-ref
m c-bytevector-s64-native-set!
m c-bytevector-s64-native-ref
m c-bytevector-u64-set!
m c-bytevector-u64-ref
m c-bytevector-u64-native-set!
m c-bytevector-u64-native-ref
m c-bytevector-sint-set!
m c-bytevector-sint-ref
m c-bytevector-uint-set!
m c-bytevector-uint-ref
m c-bytevector-ieee-single-set!
m c-bytevector-ieee-single-native-set!
m c-bytevector-ieee-single-ref
m c-bytevector-ieee-single-native-ref
m c-bytevector-ieee-double-set!
m c-bytevector-ieee-double-native-set!
m c-bytevector-ieee-double-ref
m c-bytevector-ieee-double-native-ref
m bytevector->c-bytevector
m c-bytevector->bytevector
m string->c-utf8
m c-utf8->string
o Envi iab]

Implementation support tables

Primitives 1 table

c-size-of c-bytevector-u8-set!
Chibi X X
Chicken X X
Gauche X X
Guile X X
Kawa X X
Mosh X X
Racket X X
Saggittarius X X
Stklos X X
Ypsilon X X

Primitives 2 table

Chibi
Chicken
Gauche
Guile

Kawa

Mosh
Racket
Saggittarius
Stklos
Ypsilon

Test files pass

Chibi
Chicken
Gauche
Guile

Kawa

Mosh

Racket
Saggittarius
Stklos
Ypsilon

Installation

primitives.scm

TP B A I S i SRl i SIS

Either download the latest release from https://git.sr.ht/~retropikzel/foreign-
c/refs or git clone , preferably with a tag, and copy the foreign directory to

your library directory.

Example assuming libraries in directory snow:

git clone https://git.sr.ht/~retropikzel/foreign-c --branch

LATEST_VERSION
mkdir -p snow

cp -r foreign-c/foreign snow/
make -C snow/foreign/c SCHEME_IMPLEMENTATION_NAME

With most implementations the make command does not compile anything.

When that is the case it will say “Nothing to build on
SCHEME IMPLEMENTATION NAME.”

https://git.sr.ht/~retropikzel/foreign-c/refs
https://git.sr.ht/~retropikzel/foreign-c/refs

Documentation

Types
Types are given as symbols, for example ’int8 or 'pointer.

int8
uint8
intl6
uint16
int32
uint32
int64
uinto4
char
unsigned-char
short
unsigned-short
int
unsigned-int
long
unsigned-long
float
double
pointer

o c-bytevector on Scheme side
* callback

o Callback function

* void
o Can not be argument type, only return type

Primitives 1

(c-type-size type)

Returns the size of given C type.

(define-c-library scheme-name headers object-name options)

Takes a scheme-name to bind the library to, list of C headers as strings,
shared-object name and options.

The C header strings should not contain “<” or “>”, they are added
automatically.

The name of the shared object should not contain suffix like .so or .dll. Nor
should it contain any prefix like “lib”.

Options:

» additional-versions
o Search for additional versions of shared object, given shared
object “c” and additional versions “6” “7” on linux the files “libc”,
“libc.6”, “libc.7” are searched for.
o Can be either numbers or strings
* additional-paths
o Give additional paths to search shared objects from

Example:

(cond-expand
(windows (define-c-library libc-stdlib
"("stdlib.h")
"ucrtbase"
'"((additional-versions ("@" "6"))
(additiona-paths (".")))))
(else (define-c-library libc-stdlib
(1list "stdlib.h")
e
'"((additional-versions ("@" "6"))
(additiona-paths ("."))))))

Notes

* Do not cond-expand inside the arguments, that might lead to problems
on some implementations.
* Do not store options in variables, that might lead to problems on some
implementations.
* Pass the headers using quote
o As ’(...) and not (list...)
» Pass the options using quote
° As ’(...) and not (list...)

(define-c-procedure scheme-name shared-object c-name return-type
argument-type)

Takes a scheme-name to bind the C procedure to, shared-object where the
function is looked from, c-name of the function as symbol, return-type and
argument-types.

Defines a new foreign function to be used from Scheme code.

Example:

(cond-expand

(windows (define-c-library libc-stdlib '("stdlib.h")
"ucrtbase" '()))

(else (define-c-library libc-stdlib '("stdlib.h") "c"

l(ll6ll))))
(define-c-procedure c-puts libc-stdlib 'puts 'int '(pointer))
(c-puts "Message brought to you by foreign-c!")

Notes

* Pass the return-types using quote
o As ’(...) and not (list...)

(c-bytevector? obj)

Returns #t if obj is c-bytevector, otherwise returns #f.
(c-bytevector-u8-set! c-bytevector k byte)

If K is not a valid index of c-bytevector the behaviour is undefined.
Stores the byte in element k of c-bytevector.
(c-bytevector-u8-ref c-bytevector k)

If K is not a valid index of c-bytevector the behaviour is undefined.
Returns the byte at index k of c-bytevector.
(c-bytevector-pointer-set! c-bytevector k pointer)

If K is not a valid index of c-bytevector the behaviour is undefined.
Stores the pointer(which is also c-bytevector) in element k of c-bytevector.
(c-bytevector-pointer-ref c-bytevector k pointer)

If K is not a valid index of c-bytevector the behaviour is undefined.

Returns the pointer(which is also c-bytevector) at index k of c-bytevector.
Primitives 2

(define-c-callback scheme-name return-type argument-types procedure)

Takes scheme-name to bind the Scheme procedure to, return-type,
argument-types and procedure as in place lambda.

Defines a new Sceme function to be used as callback to C code.

Example:

; Load the shared library
(cond-expand

(windows (define-c-library libc-stdlib '("stdlib.h")
"ucrtbase" '()))

(else (define-c-library '("stdlib.h") "c" "("" "6"))))

; Define C function that takes a callback
(define-c-procedure gsort libc-stdlib 'gsort 'void '(pointer int
int callback))

; Define our callback
(pffi-define-callback compare
‘int
'(pointer pointer)
(lambda (pointer-a pointer-b)
(let ((a (pffi-pointer-get pointer-a

int

2))

(b (pffi-pointer-get pointer-b 'int

2)))
(cond ((> a b) 1)
((= ab) o)
((<ab)-1)))))

; Create new array of ints to be sorted

(define array (make-c-bytevector (* (c-size-of 'int) 3)))
(pffi-pointer-set! array 'int (* (c-size-of 'int) @) 3)
(pffi-pointer-set! array 'int (* (c-size-of 'int) 1) 2)
(pffi-pointer-set! array 'int (* (c-size-of 'int) 2) 1)

(display array)
(newline)
> (3 21)

; Sort the array
(gsort array 3 (c-size-of 'int) compare)

(display array)
(newline)
> (1 2 3)

c-bytevector

Foreign-c c-bytevector interface is copied from R6RS bytevectors, with some
added functionality for C null pointers.

(make-c-null)
Returns a null C pointer.

(c-null? obj)

Returns #t if obj is a null C pointer, otherwise returns #f.
(c-free c-bytevector)

Frees c-bytevector from memory.

(call-with-address-of)

Since the support for calling C functions taking pointer address arguments,
the ones you would prefix with &, varies, some additional ceremony is
needed on the Scheme side.

Example:

Calling from C:

//void func(int** 1);
func(&1);

Calling from Scheme:

(define cbv (make-bytevector (c-type-size 'int)))
(call-with-address-of
cbv
(lambda (address)
(func address)))
; Use cbv here

The passed c-bytevector, in example named cbv, should only be used after
call to call-with-addres-of ends.

(native-endianness)

Returns the endianness symbol associated implementation’s preferred
endianness (usually that of the underlying machine architecture). This may
be any <endianness symbol>, including a symbol other than big and little.

(make-c-bytevector k)
(make-c-bytevector k fill)

Returns a newly allocated c-bytevector of k bytes.

If the fill argument is missing, the initial contents of the returned c-
bytevector are unspecified.

If the fill argument is present, it’s value must confine to C uint8 t values, it
specifies the initial value for the bytes of the c-bytevector

(c-bytevector-s8-set! c-bytevector k byte)
If K is not a valid index of c-bytevector the behaviour is undefined.

Stores the byte in element k of c-bytevector.

(c-bytevector-s8-ref c-bytevector k byte)
If K is not a valid index of c-bytevector the behaviour is undefined.
Returns the byte at index k of c-bytevector.

(c-bytevector-sint-set! bytevector k endianness size)
(c-bytevector-sint-ref bytevector k endianness size)
(c-bytevector-uint-set! bytevector k endianness size)
(c-bytevector-uint-ref bytevector k endianness size)

Size must be a positive exact integer object. If K, ..., k + size — 1 is not
valid indices of bytevector the behavior is unspecified.

The c-bytevector-uint-ref procedure retrieves the exact integer object
corresponding to the unsigned representation of size size and specified by
endianness at indices k,...,k + size — 1.

The c-bytevector-sint-ref procedure retrieves the exact integer object
corresponding to the two’s-complement representation of size size and

specified by endianness at indices k, . .., k + size — 1. For c-bytevector-
uint-set!, n must be an exact integer object in the interval {0, ..., 256size —
1}.

The c-bytevector-uint-set! procedure stores the unsigned representation of
size size and specified by endianness into bytevector at indices k, ..., k +
size — 1.

(c-bytevector-s16-set!) (c-bytevector-s16-ref) (c-bytevector-s16-native-
set!) (c-bytevector-s16-native-ref) (c-bytevector-ul6-set!) (c-
bytevector-ul6-ref) (c-bytevector-ul6-native-set!) (c-bytevector-ul6-
native-ref) (c-bytevector-s32-set!) (c-bytevector-s32-ref) (c-bytevector-
s32-native-set!) (c-bytevector-s32-native-ref) (c-bytevector-u32-set!)
(c-bytevector-u32-ref) (c-bytevector-u32-native-set!) (c-bytevector-
u32-native-ref) (c-bytevector-s64-set!) (c-bytevector-s64-ref) (c-
bytevector-s64-native-set!) (c-bytevector-s64-native-ref) (c-bytevector-
u64-set!) (c-bytevector-u64-ref) (c-bytevector-u64-native-set!) (c-
bytevector-u64-native-ref) (c-bytevector-ieee-single-set!) (c-
bytevector-ieee-single-native-set!) (c-bytevector-ieee-single-ref) (c-
bytevector-ieee-single-native-ref) (c-bytevector-ieee-double-set!) (c-
bytevector-ieee-double-native-set!) (c-bytevector-ieee-double-ref) (c-
bytevector-ieee-double-native-ref) (bytevector->c-bytevector) (c-
bytevector->bytevector) (string->c-utf8) (c-utf8->string)

Environment variables

Setting environment variables like this on Windows works for this library:

set "PFFI_LOAD_PATH=C:\Program Files (x86)/foo/bar"

PFFI_LOAD_ PATH

To add more paths to where pffi looks for libraries set PFFI LOAD PATH to
paths separated by ; on windows, and : on other operating systems.

	foreign-c a portable foreign function interface for R7RS Schemes
	foreign-c
	Implementation support tables
	Primitives 1 table
	Primitives 2 table
	Test files pass
	Installation

	Documentation
	Types
	Primitives 1
	Notes
	Notes

	Primitives 2
	c-bytevector
	Environment variables
	PFFI_LOAD_PATH

