
Portable Foreign Function

Interface for R7RS Documentation

Portable Foreign Function

Interface for R7RS - ${version}

Portable foreign function interface for R7RS. It is portable in the sense that

it supports multiple implementations, as opposed to being portable by

conforming to some specification.

Project

Issue trackers

Maling lists

Jenkins

Table of contents

Goals

Non Goals

Status

Current caveats

Implementation table

Beta

Alpha

Not started

Other

Documentation

Usage

Chibi

Chicken

Racket

Kawa

Reference

Types

Procedures and macros

pffi-init

pffi-size-of

pffi-align-of

pffi-shared-object-auto-load

pffi-shared-object-load

pffi-pointer-null

pffi-pointer-null?

pffi-pointer-allocate

•

•

•

◦

•

◦

◦

◦

◦

•

◦

▪

▪

▪

▪

•

◦

◦

▪

▪

▪

▪

▪

▪

▪

▪

https://todo.sr.ht/~retropikzel/r7rs-pffi
https://sr.ht/~retropikzel/r7rs-pffi/trackers
https://sr.ht/~retropikzel/r7rs-pffi/lists
https://jenkins.scheme.org/job/r7rs_pffi/job/r7rs-pffi/

pffi-pointer-address

pffi-pointer?

pffi-pointer-free

pffi-pointer-set!

pffi-pointer-get

pffi-string->pointer

pffi-pointer->string

pffi-struct-make

pffi-struct-pointer

pffi-struct-offset-get

pffi-struct-get

pffi-struct-set!

pffi-define

pffi-define-callback

Goals

Support only R7RS implementations

Same interface on all implementations

Some things that are procedures on one implementation are

macros on other, but they must behave the same

Stability and being boring after 1.0.0 is reached

Non goals

To have every possible FFI feature

Compiling of used library C code at any point

That is no stubs, no C code generated by the library and so on

The pffi library itself may require compilation on installation

Status

Currently the interface of the library is in okay shape. It propably will not

change much but no guarantees are being made just yet.

Due to supporting many different Scheme implementations, different parts

of this software are in different stage. As a whole it is still in alpha stage.

That said the interface should not be changing anymore and some

implementations are in beta.

Current caveats

No way to pass structs by value

Most implementations are missing callback support

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

•

•

◦

•

•

•

◦

◦

•

•

Implementation table

Beta

pffi-

init

pffi-

size-

of

pffi-

shared-

object-

auto-

load

pffi-

shared-

object-

load

pffi-

pointer-

null

pffi-

pointer-

null?

pffi-

pointer-

allocate

pffi-

pointer-

address

pffi-

pointer?

pffi-

pointer-

free

pffi-

pointer-

set!

pffi-

pointer-

get

pffi-

string-

>pointer

pffi-

pointer-

>string

pffi-

struct-

make

pffi-

struct-

pointer

pffi-

struct-

offset-

get

pffi-

struct-

get

pffi-

struct-

set!

pffi-

define

pffi-

define-

callback

Chibi X

Gauche X X X X X X X X X X X X X X X X X X X

Guile X

Kawa X

Racket X

Saggittarius X

Alpha

pffi-

init

pffi-

size-

of

pffi-

shared-

object-

auto-

load

pffi-

shared-

object-

load

pffi-

pointer-

null

pffi-

pointer-

null?

pffi-

pointer-

allocate

pffi-

pointer-

address

pffi-

pointer?

pffi-

pointer-

free

pffi-

pointer-

set!

pffi-

pointer-

get

pffi-

string-

>pointer

pffi-

pointer-

>string

pffi-

struct-

make

pffi-

struct-

pointer

pffi-

struct-

offset-

get

pffi-

struct-

get

pffi-

struct-

set!

pffi-

define

pffi-

define-

callback

Chicken-5 X

Cyclone X X X X X X X X X X X X X X X X X X X

Gambit X X X X X X X X

Gerbil X X X X X X

Larceny X X X X X X

Mosh X

Skint X X X X X X

Stklos X X X X X X X X X X X X X X

tr7 X X X X X

Ypsilon X X X X X

Not started

LIPS

Will work on nodejs by using some C FFI library from npm

Javascript side needs design

Biwascheme

Will work on nodejs by using some C FFI library from npm

Javascript side needs design

•

◦

◦

•

◦

◦

https://lips.js.org/
https://www.biwascheme.org/

MIT-Scheme

Need to study the implementation more

Airship

Need to study the implementation more

Other gambit targets

Gambit compiles to different targets other than C too, for example

Javascript. It would be cool and interesting to see if this FFI could

also support some of those

When LIPS and Biwascheme Javascript side is done then Gambit

should be done too

s48-r7rs

Need to study the implementation more

prescheme

Need to study the implementation more

Other

s7

Propably does not need FFI as it is embeddable only

Loko

Desires no C interop, I can respect that

Documentation

Usage

Chibi

Needs libffi-dev, on Debina/Ubuntu/Mint install with:

apt install libffi-dev

Build with:

make chibi

Chicken

Needs r7rs egg, install with:

chicken-install r7rs

Racket

•

◦

•

◦

•

◦

◦

•

◦

•

◦

•

◦

•

◦

https://www.gnu.org/software/mit-scheme/
https://gitlab.com/mbabich/airship-scheme
https://gambitscheme.org/
https://codeberg.org/prescheme/s48-r7rs
https://codeberg.org/prescheme/prescheme
https://scheme.fail://ccrma.stanford.edu/software/snd/snd/s7.html
https://scheme.fail/
https://wiki.call-cc.org/eggref/5/r7rs

Needs racket-r7rs, install with:

raco pkg install --auto r7rs

Kawa

Kawa Needs at least Java version 22

Needs jvm flags:

--add-exports java.base/jdk.internal.foreign.abi=ALL-UNNAMED

--add-exports java.base/jdk.internal.foreign.layout=ALL-UNNAMED

--add-exports java.base/jdk.internal.foreign=ALL-UNNAMED

--enable-native-access=ALL-UNNAMED

Reference

Types

Types are given as symbols, for example ’int8 or ’pointer.

int8

uint8

int16

uint16

int32

uint32

int64

uint64

char

unsigned-char

short

unsigned-short

int

unsigned-int

long

unsigned-long

float

double

pointer

callback

Callback function

Procedures and macros

Some of these are procedures and some macros, it might also change

implementation to implementation.

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

◦

https://github.com/lexi-lambda/racket-r7rs

pffi-init

pffi-init

Always call this first, on most implementation it does nothing but some

implementations might need initialisation run.

pffi-size-of

pffi-size-of object -> number

Returns the size of the pffi-struct, pffi-enum or pffi-type.

pffi-align-of

pffi-align-of type -> number

Returns the align of the type.

pffi-shared-object-auto-load

pffi-shared-object-auto-load headers shared-object-name [options] ->

object

Load given shared object automatically searching many predefined paths.

Takes as argument a list of C headers, these are for the compiler ones. And

an shared-object name, used by the dynamic FFI’s. The name of the shared

object should not contain suffix like .so or .dll. Nor should it contain any

prefix like “lib”.

Additional options argument can be provided, theys should be a pair with a

keyword. The options are:

additional-versions

Search for additional versions of shared object, given shared

object “c” and additional versions “6” “7” on linux the files “libc”,

“libc.6”, “libc.7” are searched for.

Can be either numbers or strings

additional-paths

Give additional paths to search shared objects for

Example:

(define libc-stdlib

 (cond-expand

 (windows (pffi-shared-object-auto-load (list "stdlib.h")

"ucrtbase"))

 (else (pffi-shared-object-auto-load (list "stdlib.h")

 "c"

 '(additional-versions .

•

◦

◦

•

◦

("6"))

 '(additional-search-

paths . ("."))))))

pffi-shared-object-load

pffi-shared-object-load headers path [options]

It is recommended to use the pffi-shared-object-auto-load instead of this

directly.

Headers is a list of strings needed to be included, for example

(list "curl/curl.h")

Path is the full path of the shared object without any “lib” prefix or “.so/.dll”

suffix. For example:

"curl"

Options:

additional-versions

List of different versions of library to try, for example (list “.0” “.

1”)

pffi-pointer-null

pffi-pointer-null -> pointer

Returns a new NULL pointer.

pffi-pointer-null?

pffi-pointer-null? pointer -> boolean

Returns #t if given pointer is null pointer, #f otherwise.

pffi-pointer-allocate

pffi-pointer-allocate size -> pointer

Returns newly allocated pointer of given size.

pffi-pointer-address

pffi-pointer-address pointer -> number

Returns the address of given pointer as number.

•

◦

pffi-pointer?

pffi-pointer? object -> boolean

Returns #t if given object is pointer, #f otherwise.

pffi-pointer-free

pffi-pointer-free pointer

Frees given pointer.

pffi-pointer-set!

pffi-pointer-set! pointer type offset value

Sets the value on a pointer on given offset. For example:

(define p (pffi-pointer-allocate 128))

(pffi-pointer-set! p 'int 64 100)

Would set the offset of 64, on pointer p to value 100.

pffi-pointer-get

pffi-pointer-get pointer type offset -> object

Gets the value from a pointer on given offset. For example:

(define p (pffi-pointer-allocate 128))

(pffi-pointer-set! p 'int 64 100)

(pffi-pointer-get p 'int 64)

> 100

pffi-string->pointer

pffi-string->pointer string -> pointer

Makes pointer out of a given string.

pffi-pointer->string

pffi-pointer->string pointer -> string

Makes string out of a given pointer.

pffi-struct-make

pffi-struct-make c-type members . pointer -> pffi-struct

Creates a new pffi-struct and allocates pointer for it. The members

argument is a list of member names and types. For example:

(define color (pffi-struct-make 'color '((int8 . r) (int8 . g)

(int8 . b) (int8 .a))))

(define test (pffi-struct-make "struct test" '((int8 . r) (int8 .

g) (int8 . b) (int8 .a))))

C-type argument can be symbol or a string.

pffi-struct-pointer

pffi-struct-pointer pffi-struct -> pointer

Returns the pointer that holds the struct content. You need to use this when

passing a struct as a pointer to foreign functions.

(define s (pffi-struct-make 'test '((int . r) (int . g) (int .

b))))

(pffi-struct-pointer s)

pffi-struct-offset-get

pffi-struct-offset-get member-name -> number

Returns the offset of a struct member with given name.

pffi-struct-get

pffi-struct-get pffi-struct member-name -> object

Returns the value of the givens struct member.

pffi-struct-set!

pffi-struct-set! pffi-struct member-name value

Sets the value of the givens struct member. It is up to you to make sure that

the type of value is correct.

pffi-define

pffi-define scheme-name shared-object c-name return-type argument-types

Defines a new foreign function to be used from Scheme code. For example:

(define libc-stdlib

 (cond-expand

 (windows (pffi-shared-object-auto-load (list "stdlib.h")

(list) "ucrtbase" (list "")))

 (else (pffi-shared-object-auto-load (list "stdlib.h")

(list) "c" (list "" "6")))))

(pffi-define c-puts libc-stdlib 'puts 'int (list 'pointer))

(c-puts "Message brought to you by FFI!")

pffi-define-callback

pffi-define-callback scheme-name return-type argument-types procedure

Defines a new Sceme function to be used as callback to C code. For

example:

; Load the shared library

(define libc-stdlib

 (cond-expand

 (windows (pffi-shared-object-auto-load (list "stdlib.h")

(list) "ucrtbase" (list "")))

 (else (pffi-shared-object-auto-load (list "stdlib.h")

(list) "c" (list "" "6")))))

; Define C function that takes a callback

(pffi-define qsort libc-stdlib 'qsort 'void (list 'pointer 'int

'int 'callback))

; Define our callback

(pffi-define-callback compare

 'int

 (list 'pointer 'pointer)

 (lambda (pointer-a pointer-b)

 (let ((a (pffi-pointer-get pointer-a 'int

0))

 (b (pffi-pointer-get pointer-b 'int

0)))

 (cond ((> a b) 1)

 ((= a b) 0)

 ((< a b) -1)))))

; Create new array of ints to be sorted

(define array (pffi-pointer-allocate (* (pffi-size-of 'int) 3)))

(pffi-pointer-set! array 'int (* (pffi-size-of 'int) 0) 3)

(pffi-pointer-set! array 'int (* (pffi-size-of 'int) 1) 2)

(pffi-pointer-set! array 'int (* (pffi-size-of 'int) 2) 1)

(display array)

(newline)

;> (3 2 1)

; Sort the array

(qsort array 3 (pffi-size-of 'int) compare)

(display array)

(newline)

;> (1 2 3)

	Portable Foreign Function Interface for R7RS Documentation
	Portable Foreign Function Interface for R7RS - ${version}
	Table of contents
	Goals
	Non goals
	Status
	Current caveats

	Implementation table
	Beta
	Alpha
	Not started
	Other

	Documentation
	Usage
	Chibi
	Chicken
	Racket
	Kawa

	Reference
	Types
	Procedures and macros
	pffi-init
	pffi-size-of
	pffi-align-of
	pffi-shared-object-auto-load
	pffi-shared-object-load
	pffi-pointer-null
	pffi-pointer-null?
	pffi-pointer-allocate
	pffi-pointer-address
	pffi-pointer?
	pffi-pointer-free
	pffi-pointer-set!
	pffi-pointer-get
	pffi-string->pointer
	pffi-pointer->string
	pffi-struct-make
	pffi-struct-pointer
	pffi-struct-offset-get
	pffi-struct-get
	pffi-struct-set!
	pffi-define
	pffi-define-callback

