foreign-c is a C foreign function interface (FFI) library for R7RS
Schemes. It is portable in the sense that it supports multiple
implementations.

Issue tracker

Maling lists

[enkins

» Installation
* Documentation
° Types
o Primitives 1
m c-type-size
m define-c-library
m define-c-procedure
c-bytevector?
c-bytevector-u8-set!
c-bytevector-u8-ref

[
[
[
m c-bytevector-pointer-set!

c-bytevector-pointer-ref
o Primitives 2

m define-c-callback
o c-bytevector

m make-c-null

m c-null?

m c-free

make-c-bytevector
call-with-address-of
native-endianness
c-bytevector-s8-set!
c-bytevector-s8-ref
c-bytevector-s16-set!
c-bytevector-s16-ref
c-bytevector-s16-native-set!
c-bytevector-s16-native-ref
c-bytevector-ul6-set!
c-bytevector-ul6-ref

https://sr.ht/~retropikzel/foreign-c/trackers
https://sr.ht/~retropikzel/foreign-c/lists
https://jenkins.scheme.org/job/retropikzel/job/foreign-c/

c-bytevector-ul6-native-set!
c-bytevector-ul6-native-ref
c-bytevector-s32-set!
c-bytevector-s32-ref
c-bytevector-s32-native-set!
c-bytevector-s32-native-ref
c-bytevector-u32-set!
c-bytevector-u32-ref
c-bytevector-u32-native-set!
c-bytevector-u32-native-ref
c-bytevector-s64-set!
c-bytevector-s64-ref
c-bytevector-s64-native-set!
c-bytevector-s64-native-ref
c-bytevector-u64-set!
c-bytevector-u64-ref
c-bytevector-u64-native-set!
c-bytevector-u64-native-ref
c-bytevector-sint-set!
c-bytevector-sint-ref
c-bytevector-uint-set!
c-bytevector-uint-ref
c-bytevector-ieee-single-set!
c-bytevector-ieee-single-native-set!
c-bytevector-ieee-single-ref
c-bytevector-ieee-single-native-ref
c-bytevector-ieee-double-set!
c-bytevector-ieee-double-native-set!
c-bytevector-ieee-double-ref

m c-bytevector-ieee-double-native-ref

m bytevector->c-bytevector

m c-bytevector->bytevector

m string->c-utf8

m c-utf8->string
o Environment variables

Implementation support tables

NOTE Implementation missing from this table does not mean it
will not be supported. Either the work on it has not started yet or
support for missing implementations is so unfinished that they are
not listed here.

Required versions:

e Chibi > 0.11
o At the time only 0.11 is out so build from git
e Chicken >=5.4.0 <6
* Gauche >= 0.9.15
o Does not yet work with snow-chibi install
e Guile >= 3
o Does not yet work with snow-chibi install
o Has include bug, might not work on all situations
» Kawa >= 3.11 and Java >= 22
o Needs arguments to enable FFI
m -J-add-exports=java.base/jdk.internal.foreign.abi=ALL-
UNNAMED
m -J-add-exports=java.base/
jdk.internal.foreign.layout=ALL-UNNAMED
m -J-add-exports=java.base/jdk.internal.foreign=ALL-
UNNAMED
m -J-enable-native-access=ALL-UNNAMED
m -J-enable-preview
o All needed arguments on one line for copy pasting
m -J-add-exports=java.base/jdk.internal.foreign.abi=ALL-
UNNAMED -J-add-exports=java.base/
jdk.internal.foreign.layout=ALL-UNNAMED -J-add-
exports=java.base/jdk.internal.foreign=ALL-UNNAMED
-J-enable-native-access=ALL-UNNAMED -J-enable-
preview
o So that snow-chibi installed library is found
m -Dkawa.import.path=/usr/local/share/kawa
m -Dkawa.import.path=/usr/local/share/kawa/lib
* Mosh >= 0.2.9-rcl
* Racket >= 8.16 [cs]
» Sagittarius >= 0.9.13

» STklos > 2.10
o At the time only 2.10 is out so build from git

Primitives 1 table

C- C- C- define-

type- bytevector- bytevector- c- - defin

size u8-set! u8-ref library bytevector? procec

Chibi X X X X - X
Chicken X X X X X X
Gauche X X X X X X
Guile X X X X < X
Kawa X X X X X X
Mosh X X X X < X
Racket X X X X X X
Sagittarius X X X X X X
STklos X X X X X X
Ypsilon X X X X X X

Primitives 2 table

define-c-callback

Chibi

Chicken X
Gauche

Guile X
Kawa

Mosh X
Racket X
Saggittarius X
STklos

Ypsilon X

Test files pass

primitives.scm addressof.scm callback.scm

Chibi X X
Chicken
Gauche
Guile
Kawa
Mosh
Racket

KooK M X
<

<
o

Saggittarius
STklos

o T I R I S ST B
<

Ypsilon

Installation

Snow-fort

Not yet installable with snow-fort:

e Gauche
o Use manual installation

https://snow-fort.orqg/

snow-chibi -impls=IMPLEMENTATION install “(foreign c)”
You can test that library is found by your implementation like this:

cp tests/hello.scm /tmp/hello.scm
cd /tmp
IMPLEMENTATION hello.scm

Manual system wide

Either download the latest release from https://git.sr.ht/
~retropikzel/foreign-c/refs or git clone, tag, and copy the foreign
directory to your library directory.

https://snow-fort.org/
https://git.sr.ht/~retropikzel/foreign-c/refs
https://git.sr.ht/~retropikzel/foreign-c/refs

Example installation for Gauche:

make SCHEME=gauche
make SCHEME=gauche install

With most implementations the make command does not compile
anything. When that is the case it will say “Nothing to build on
SCHEME IMPLEMENTATION NAME.” ### Manual for project

Either download the latest release from https://git.sr.ht/
~retropikzel/foreign-c/refs or git clone, tag, and copy the foreign
directory to your library directory.

Example assuming libraries in directory snow:

git clone https://git.sr.ht/~retropikzel/foreign-c --branch
LATEST VERSION

cd foreign-c

make SCHEME IMPLEMENTATION NAME

cd ..

mkdir -p snow

cp -r foreign-c/foreign snow/

With most implementations the make command does not compile
anything. When that is the case it will say “Nothing to build on
SCHEME IMPLEMENTATION NAME.”

Documentation

Types
Types are given as symbols, for example ’int8 or 'pointer.

* int8

* uint8
* intl6
* uintl6
* int32
* uint32
* int64
* uinto4

https://git.sr.ht/~retropikzel/foreign-c/refs
https://git.sr.ht/~retropikzel/foreign-c/refs

e char
* unsigned-char
e short
* unsigned-short
e int
* unsigned-int
* long
* unsigned-long
* float
* double
e pointer
o c-bytevector on Scheme side
* callback
o Callback function
* void
o Can not be argument type, only return type

Primitives 1

(c-type-size type)

Returns the size of given C type.

(define-c-library scheme-name headers object-name options)

Takes a scheme-name to bind the library to, list of C headers as
strings, shared-object name and options.

The C header strings should not contain “<” or “>”, they are
added automatically.

The name of the shared object should not contain suffix like .so or
.dll. Nor should it contain any prefix like “lib”.

Options:

» additional-versions
o Search for additional versions of shared object, given
shared object “c” and additional versions “6” “7” on linux
the files “libc”, “libc.6”, “libc.7” are searched for.
o Can be either numbers or strings

» additional-paths
o Give additional paths to search shared objects from

Example:

(define-c-library libc
(list "stdlib.h")
libc-name
'((additional-versions ("" "0" "6"))
(additional-paths ("."))))

Notes

* Do not cond-expand inside the arguments, that might lead to
problems on some implementations.
* Do not store options in variables, that might lead to problems
on some implementations.
* Pass the headers using quote
o As ’(...) and not (list...)
* Pass the options using quote
o As ’(...) and not (list...)

(define-c-procedure scheme-name shared-object c-name return-
type argument-type)

Takes a scheme-name to bind the C procedure to, shared-object
where the function is looked from, c-name of the function as
symbol, return-type and argument-types.

Defines a new foreign function to be used from Scheme code.
Example:

(define-c-library libc '("stdlib.h") libc-name '("6"))
(define-c-procedure c-puts libc 'puts 'int '(pointer))
(c-puts "Message brought to you by foreign-c!")

Notes

* Pass the return-types using quote
o As ’(...) and not (list...)

(c-bytevector? obj)

Returns #t if obj is c-bytevector, otherwise returns #f.
(c-bytevector-u8-set! c-bytevector k byte)

If K is not a valid index of c-bytevector the behaviour is undefined.
Stores the byte in element k of c-bytevector.
(c-bytevector-u8-ref c-bytevector k)

If K is not a valid index of c-bytevector the behaviour is undefined.
Returns the byte at index k of c-bytevector.
(c-bytevector-pointer-set! c-bytevector k pointer)

If K is not a valid index of c-bytevector the behaviour is undefined.

Stores the pointer(which is also c-bytevector) in element k of c-
bytevector.

(c-bytevector-pointer-ref c-bytevector k pointer)
If K is not a valid index of c-bytevector the behaviour is undefined.

Returns the pointer(which is also c-bytevector) at index k of c-
bytevector.

Primitives 2

(define-c-callback scheme-name return-type argument-types
procedure)

Takes scheme-name to bind the Scheme procedure to, return-type,
argument-types and procedure as in place lambda.

Defines a new Sceme function to be used as callback to C code.
Example:

; Load the shared library
(define-c-library libc-stdlib '("stdlib.h") libc-name '("" "6"))

; Define C function that takes a callback
(define-c-procedure qsort libc-stdlib 'gsort 'void '(pointer int

int callback))

; Define our callback
(define-c-callback compare
'int
"(pointer pointer)
(lambda (pointer-a pointer-b)
(let ((a (c-bytevector-sint-get pointer-a
(native-endianness) 0))
(b (c-bytevector-sint-get pointer-b
(native-endianness) 0)))
(cond ((> a
((=ab) 0)
((< a

; Create new array of ints to be sorted

(define array (make-c-bytevector (* (c-type-size 'int) 3)))

0) 3)
1) 2)
2) 1)

(c-bytevector-s32-native-set! array (* (c-type-size 'int

)
()

(c-bytevector-s32-native-set! array (* (c-type-size 'int)

(c-bytevector-s32-native-set! array (* (c-type-size 'int)

(display array)

(newline)

7> (3 21)

; Sort the array
(gsort array 3 (c-type-size 'int) compare)

(display array)
(newline)
;> (1 2 3)

c-bytevector

Foreign-c c-bytevector interface is copied from R6RS bytevectors,
with some added functionality for C null pointers and manual
memory management.

(make-c-null)

Returns a null C pointer.

(c-null? obj)

Returns #t if obj is a null C pointer, otherwise returns #f.
(c-free c-bytevector)

Frees c-bytevector from memory.

(call-with-address-of c-bytevector thunk)

Calls thunk with address pointer of c-bytevector.

Since the support for calling C functions taking pointer address
arguments, ones prefixrd with & in C, varies, some additional
ceremony is needed on the Scheme side.

Example:
Calling from C:

//void func(int** 1i);
func(&i);

Calling from Scheme:

(define cbv (make-bytevector (c-type-size 'int)))
(call-with-address-of
cbv
(Lambda (address)
(func address)))
; Use cbv here

The passed c-bytevector, in example named cbv, should only be
used after call to call-with-addres-of ends.

(bytevector->c-bytevector bytevector)

Returns a newly allocated c-bytevector of the bytes of bytevector.
(c-bytevector->bytevector)

Returns a newly allocated bytevector of the bytes of c-bytevector.

(native-endianness)

Returns the endianness symbol associated implementation’s
preferred endianness (usually that of the underlying machine
architecture). This may be any <endianness symbol>, including a
symbol other than big and little.

(make-c-bytevector k)

(make-c-bytevector k fill)
Returns a newly allocated c-bytevector of k bytes.

If the fill argument is missing, the initial contents of the returned
c-bytevector are unspecified.

If the fill argument is present, it’s value must confine to C uint8 t
values, it specifies the initial value for the bytes of the c-
bytevector

(c-bytevector-s8-set! c-bytevector k byte)

If k is not a valid index of c-bytevector the behaviour is undefined.
Stores the byte in element k of c-bytevector.
(c-bytevector-s8-ref c-bytevector k)

If k is not a valid index of c-bytevector the behaviour is undefined.
Returns the byte at index k of c-bytevector.
(c-bytevector-char-set! c-bytevector k char)

If k is not a valid index of c-bytevector the behaviour is undefined.
Stores the char in element k of c-bytevector.
(c-bytevector-char-ref c-bytevector k)

If k is not a valid index of c-bytevector the behaviour is undefined.
Returns the char at index k of c-bytevector.
(c-bytevector-uchar-set! c-bytevector k char)

If k is not a valid index of c-bytevector the behaviour is undefined.

Stores the unsigned char in element k of c-bytevector.
(c-bytevector-uchar-ref c-bytevector k)

If k is not a valid index of c-bytevector the behaviour is undefined.
Returns the unsigned char at index k of c-bytevector.

(c-bytevector-uint-ref c-bytevector k endianness size)
(c-bytevector-sint-ref c-bytevector k endianness size)
(c-bytevector-uint-set! c-bytevector k n endianness size)

(c-bytevector-sint-set! c-bytevector k n endianness size)

Size must be a positive exact integer object. If k,...,k + size — 1 is
not valid indices of c-bytevector the behavior is unspecified.

The c-bytevector-uint-ref procedure retrieves the exact integer
object corresponding to the unsigned representation of size size
and specified by endianness at indices k,...,k + size — 1.

The c-bytevector-sint-ref procedure retrieves the exact integer
object corresponding to the two’s-complement representation of
size size and specified by endianness at indices k,...,k + size — 1.
For c-bytevector-uint-set!, n must be an exact integer object in the
interval {0,...,256"size — 1}.

The c-bytevector-uint-set! procedure stores the unsigned
representation of size size and specified by endianness into c-
bytevector at indices k,...,k + size — 1.

The . . . -set! procedures return unspecified values.
Examples:

(define cbv (make-c-bytevector (c-type-size 'int)))
(c-bytevector-sint-set! cbv 0 100 (native-endianness) (c-type-size
'int))

(c-bytevector-sint-ref cbv 0 (native-endianness) (c-type-size
'int))

> 100

(c-bytevector-ul6-ref c-bytevector k endianness)
(c-bytevector-s16-ref c-bytevector k endianness)
(c-bytevector-ul6-native-ref c-bytevector k)
(c-bytevector-s16-native-ref c-bytevector k)
(c-bytevector-ul6-set! c-bytevector k n endianness)
(c-bytevector-s16-set! c-bytevector k n endianness)
(c-bytevector-ul6-native-set! c-bytevector k n)

(c-bytevector-s16-native-set! c-bytevector k n)

K must be a valid index of c-bytevector ; so must k + 1. For c-
bytevector-ul6-set! and c-bytevector-ul6-native-set!, n must be an
exact integer object in the interval {0,...,216 — 1}. For c-
bytevector-s16-set! and c-bytevector-s16-native-set!, n must be an
exact integer object in the interval {—215,...,215 — 1}.

These retrieve and set two-byte representations of numbers at
indices k and k + 1, according to the endianness specified by
endianness. The procedures with ul6 in their names deal with the
unsigned representation; those with s16 in their names deal with
the two’s-complement representation.

The procedures with native in their names employ the native
endianness, and work only at aligned indices: k must be a multiple
of 2.

The ...-set! procedures return unspecified values.

(c-bytevector-u32-ref c-bytevector k endianness)
(c-bytevector-s32-ref c-bytevector k endianness)
(c-bytevector-u32-native-ref c-bytevector k)

(c-bytevector-s32-native-ref c-bytevector k)

(c-bytevector-u32-set! c-bytevector k n endianness)
(c-bytevector-s32-set! c-bytevector k n endianness)
(c-bytevector-u32-native-set! c-bytevector k n)

(c-bytevector-s32-native-set! c-bytevector k n)

K,...,k + 3 must be valid indices of bytevector. For c-bytevector-
u32-set! and bytevector-u32-native-set!, n must be an exact
integer object in the interval {0,...,232 — 1}. For bytevector-s32-
set! and bytevector-s32-native-set!, n must be an exact integer
object in the interval {—231,...,232 — 1}.

These retrieve and set four-byte representations of numbers at
indices k,...,k + 3, according to the endianness specified by
endianness. The procedures with u32 in their names deal with the
unsigned representation; those with s32 with the two’s-
complement representation.

The procedures with native in their names employ the native
endianness, and work only at aligned indices: k must be a multiple
of 4.

The ...-set! procedures return unspecified values.

(c-bytevector-u64-ref c-bytevector k endianness)
(c-bytevector-s64-ref c-bytevector k endianness)
(c-bytevector-u64-native-ref c-bytevector k)
(c-bytevector-s64-native-ref c-bytevector k)
(c-bytevector-ub64-set! c-bytevector k n endianness)
(c-bytevector-s64-set! c-bytevector k n endianness)
(c-bytevector-u64-native-set! c-bytevector k n)

(c-bytevector-s64-native-set! c-bytevector k n)

K,...,k + 7 must be valid indices of c-bytevector. For c-bytevector-
u64-set! and c-bytevector-u64-native-set!, n must be an exact
integer object in the interval {0,...,264 — 1}. For c-bytevector-s64-
set! and c-bytevector-s64-native-set!, n must be an exact integer
object in the interval {—263,...,264 — 1}.

These retrieve and set eight-byte representations of numbers at
indices k,...,k + 7, according to the endianness specified by
endianness. The procedures with u64 in their names deal with the
unsigned representation; those with s64 with the two’s-
complement representation.

The procedures with native in their names employ the native
endianness, and work only at aligned indices: k must be a multiple
of 8.

The ...-set! procedures return unspecified values.

(c-bytevector-ieee-single-native-ref)

(c-bytevector-ieee-single-ref)

K,...,k + 3 must be valid indices of c-bytevector. For c-bytevector-
ieee-single-native-ref, k must be a multiple of 4.

These procedures return the inexact real number object that best
represents the IEEE-754 single-precision number represented by
the four bytes beginning at index k.

(c-bytevector-ieee-double-native-ref)

(c-bytevector-ieee-double-ref)

K,...,k + 7 must be valid indices of c-bytevector. For c-bytevector-
ieee-double-native-ref, k must be a multiple of 8.

These procedures return the inexact real number object that best
represents the IEEE-754 double-precision number represented by
the eight bytes beginning at index k.

(c-bytevector-ieee-single-native-set!)

(c-bytevector-ieee-single-set!)

K,...,k + 3 must be valid indices of c-bytevector. For c-bytevector-
ieee-single-native-set!, k must be a multiple of 4.

These procedures store an IEEE-754 single-precision
representation of x into elements k through k + 3 of bytevector,
and return unspecified values.

(c-bytevector-ieee-double-native-set!)

(c-bytevector-ieee-double-set!)

K,...,k + 7 must be valid indices of bytevector. For c-bytevector-
ieee-double-native-set!, k must be a multiple of 8.

These procedures store an IEEE-754 double-precision
representation of x into elements k through k + 7 of bytevector,
andreturn unspecified values.

(string->c-utf8 string)

Returns a newly allocated (unless empty) c-bytevector that
contains the UTF-8 encoding of the given string.

(c-utf8->string c-bytevector)

Returns a newly allocated (unless empty) string whose character
sequence is encoded by the given c-bytevector.

Utilities
libc-name

Name of the C standard library on the current operating system.
Supported OS:

e Windows
e Linux
* Haiku

See foreign/c/libc.scm to see which headers are included and what
shared libraries are loaded.

Example:

(define-c-library libc '("stdlib.h") 1libc-name '("" "6"))
(define-c-procedure c-puts libc 'puts 'int '(pointer))
(c-puts "Message brought to you by foreign-c!")

Environment variables

Setting environment variables like this on Windows works for this
library:

set "FOREIGN C LOAD PATH=C:\Program Files (x86)/foo/bar"
FOREIGN C_LOAD PATH

To add more paths to where foreign c looks for libraries set
FOREIGN C LOAD PATH to paths separated by ; on windows, and
: on other operating systems.

	Implementation support tables
	Primitives 1 table
	Primitives 2 table
	Test files pass

	Installation
	Snow-fort
	Manual system wide

	Documentation
	Types
	Primitives 1
	Notes
	Notes

	Primitives 2
	c-bytevector
	Utilities
	Environment variables
	FOREIGN_C__LOAD_PATH

