
Portable Foreign Function

Interface for R7RS Documentation

Portable Foreign Function

Interface for R7RS

Portable foreign function interface for R7RS. It is portable in the sense that

it supports multiple implementations, as opposed to being portable by

conforming to some specification.

Project

Issue trackers

Maling lists

Jenkins

Table of contents

Goals

Non Goals

Status

Current caveats

Roadmap

Feature implementation table

Primitives

Built upon

Documentation

Dependencies

Chibi

Chicken

Gauche

Racket

Kawa

Installation

Project local

Linux

Windows

System global

Reference

Types

Environment variables

PFFI_LOAD_PATH

Procedures and macros

pffi-init

•

•

•

◦

•

•

◦

◦

•

◦

▪

▪

▪

▪

▪

◦

▪

▪

▪

▪

•

◦

◦

▪

◦

▪

https://todo.sr.ht/~retropikzel/r7rs-pffi
https://sr.ht/~retropikzel/r7rs-pffi/trackers
https://sr.ht/~retropikzel/r7rs-pffi/lists
https://jenkins.scheme.org/job/r7rs_pffi/job/r7rs-pffi/

c-size-of

pffi-align-of

define-c-library

make-c-null

c-null?

make-c-bytevector

pffi-pointer-address

c-bytevector?

c-free

pffi-pointer-set!

pffi-pointer-get

string->c-bytevector

c-bytevector->sring

pffi-struct-make

pffi-struct-pointer

pffi-struct-offset-get

pffi-struct-get

pffi-struct-set!

pffi-array-allocate

pffi-array-pointer

pffi-array?

pffi-pointer->array

pffi-array-get

pffi-array-set!

pffi-list->array

pffi-array->list

define-c-procedure

pffi-define-callback

Goals

Support only R7RS implementations

Same interface on all implementations

Some things that are procedures on one implementation are

macros on other, but they must behave the same

Stability and being boring after 1.0.0 is reached

Non goals

Compiling of used library C code at any point

That is no stubs, no C code generated by the library and so on

The pffi library itself may require compilation on installation

Status

In alpha.

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

▪

•

•

◦

•

•

◦

◦

Current caveats

No way to pass structs by value

Most implementations are missing callback support

Always pass arguments to pffi functions/macros as ’(1 2 3) and not (list

1 2 3)

Always pass pffi-define-callback procedure as lambda in place

No support for variadic function arguments

Can be partially worked around by defining multiple versions of

same function with different number of arguments

Roadmap

For roadmap to 1.0.0 see issues

Feature mplementation table

Primitives

c-size-of define-c-library c-bytevector? pffi-pointer-set! pffi-pointer-get define-c-procedure pffi-define-callback

Chibi X X X X X X

Chicken X X X X X X X

Cyclone X X X X X X

Gambit X

Gauche X X X X X X

Gerbil

Guile X X X X X X X

Kawa X X X X X X X

Larceny

Mosh X X X X X X X

Racket X X X X X X X

Saggittarius X X X X X X X

Skint

Stklos X X X

tr7

Ypsilon X X X X X X X

Built upon

•

•

•

•

•

◦

https://todo.sr.ht/~retropikzel/r7rs-pffi?search=status%3Aopen%20label%3A%221.0.0%22

These features are built upon the primitives and if primitives are

implemented and work, they should work too.

make-c-bytevector

make-c-null

c-null?

pffi-pointer-address

c-free

pffi-pointer->string

pffi-string->pointer

pffi-struct-make

pffi-struct-pointer

pffi-struct-offset-get

pffi-struct-get

pffi-struct-set!

pffi-array-allocate

pffi-array?

pffi-pointer->array

pffi-array-get

pffi-array-set!

pffi-list->array

pffi-array->list

Not started

LIPS

Will work on nodejs by using some C FFI library from npm

Javascript side needs design

Biwascheme

Will work on nodejs by using some C FFI library from npm

Javascript side needs design

MIT-Scheme

Need to study the implementation more

Airship

Need to study the implementation more

Other gambit targets

Gambit compiles to different targets other than C too, for example

Javascript. It would be cool and interesting to see if this FFI could

also support some of those

When LIPS and Biwascheme Javascript side is done then Gambit

should be done too

s48-r7rs

Need to study the implementation more

prescheme

Need to study the implementation more

Other

s7

Propably does not need FFI as it is embeddable only

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

◦

◦

•

◦

◦

•

◦

•

◦

•

◦

◦

•

◦

•

◦

•

◦

https://lips.js.org/
https://www.biwascheme.org/
https://www.gnu.org/software/mit-scheme/
https://gitlab.com/mbabich/airship-scheme
https://gambitscheme.org/
https://codeberg.org/prescheme/s48-r7rs
https://codeberg.org/prescheme/prescheme
https://scheme.fail://ccrma.stanford.edu/software/snd/snd/s7.html

Loko

Desires no C interop, I can respect that

Documentation

Dependencies

Some implementations have extra dependencies/requirements beyond just

the library.

Chibi

Building depends on libffi.

Debian/Ubuntu/Mint install with:

apt install libffi-dev

Chicken

Chicken needs r7rs egg installed. Install it with:

chicken-install r7rs

Gauche

Building depends on libffi.

Debian/Ubuntu/Mint install with:

apt install libffi-dev

Racket

Needs racket-r7rs, install with:

raco pkg install --auto r7rs

Kawa

Kawa Needs at least Java version 22 these flags before any other arguments:

-J–add-exports=java.base/jdk.internal.foreign.abi=ALL-UNNAMED

-J–add-exports=java.base/jdk.internal.foreign.layout=ALL-UNNAMED

•

◦

•

•

https://scheme.fail/
https://github.com/lexi-lambda/racket-r7rs

-J–add-exports=java.base/jdk.internal.foreign=ALL-UNNAMED

-J–enable-native-access=ALL-UNNAMED

If you are running kawa.jar with plain java then give same arguments to java

without the -J prefix.

Installation

Since the project is under active development is best to clone it from git,

Project local

Linux

 Assuming you have a project and your libraries live in directory called snow

in it:

git clone https://git.sr.ht/~retropikzel/r7rs-pffi

mkdir -p snow

cp -r r7rs-pffi/retropikzel snow/

cd snow/retropikzel/pffi

make <SCHEME>

Windows

There is no build scripts yet for Windows, that said many implementations

work without compiling anything. If you run this and it says “There is

notching to build for SCHEME” then you should be good to go.

System global

Still work in progress.

Reference

Types

Types are given as symbols, for example ’int8 or ’pointer.

int8

uint8

int16

uint16

int32

•

•

•

•

•

•

•

uint32

int64

uint64

char

unsigned-char

short

unsigned-short

int

unsigned-int

long

unsigned-long

float

double

pointer

callback

Callback function

Types

Environment variables

Setting environment variables like this on Windows works for this library:

set "PFFI_LOAD_PATH=C:\Program Files (x86)/foo/bar"

PFFI_LOAD_PATH

To add more paths to where pffi looks for libraries set PFFI_LOAD_PATH to

paths separated by ; on windows, and : on other operating systems.

Procedures and macros

Some of these are procedures and some macros, it might also change

implementation to implementation.

pffi-init

pffi-init

Always call this first, on most implementation it does nothing but some

implementations might need initialisation run.

c-size-of

c-size-of object -> number

•

•

•

•

•

•

•

•

•

•

•

•

•

•

•

◦

Returns the size of the pffi-struct, pffi-enum or pffi-type.

pffi-align-of

pffi-align-of type -> number

Returns the align of the type.

define-c-library

define-c-library headers shared-object-name [options] -> object

Load given shared object automatically searching many predefined paths.

Takes as argument a list of C headers, these are for the compiler ones. And

an shared-object name, used by the dynamic FFI’s. The name of the shared

object should not contain suffix like .so or .dll. Nor should it contain any

prefix like “lib”.

Additional options argument can be provided, theys should be a pair with a

keyword. The options are:

additional-versions

Search for additional versions of shared object, given shared

object “c” and additional versions “6” “7” on linux the files “libc”,

“libc.6”, “libc.7” are searched for.

Can be either numbers or strings

additional-paths

Give additional paths to search shared objects for

Example:

(cond-expand

 (windows (define-c-library libc-stdlib

 '("stdlib.h")

 "ucrtbase"

 '((additional-versions ("0" "6"))

 (additiona-paths (".")))))

 (else (define-c-library libc-stdlib

 (list "stdlib.h")

 "c"

 '((additional-versions ("0" "6"))

 (additiona-paths ("."))))))

Notes

Do not cond-expand inside the arguments, that might lead to problems

on some implementations.

•

◦

◦

•

◦

•

Do not store options in variables, that might lead to problems on some

implementations.

Do pass the headers using quote

As ’(… and not (list…

Do pass the options using quote

As ’(… and not (list…

make-c-null

make-c-null -> pointer

Returns a new NULL pointer.

c-null?

c-null? pointer -> boolean

Returns #t if given pointer is null pointer, #f otherwise.

make-c-bytevector

make-c-bytevector size -> pointer

Returns newly allocated pointer of given size.

pffi-pointer-address

pffi-pointer-address pointer -> pointer

Returns the address of given pointer inside a pointer. This is used when

passing pointers to pointers to foreign procedures. This is similar to the c’s

&. One important difference is that after you have passed a pointer to the

procedure you must get value from it back to the pointer which address you

are passing. Example:

(define input-pointer (make-c-bytevector <needed size>))

(define input-pointer-address (pffi-pointer-address input-

pointer))

(<foreign-procedure-that takes &pointer as argument> input-

pointer-address)

(set! input-pointer (pffi-pointer-get input-pointer-address

'pointer 0))

c-bytevector?

•

•

◦

•

◦

c-bytevector? object -> boolean

Returns #t if given object is pointer, #f otherwise.

c-free

c-free pointer

Frees given pointer.

pffi-pointer-set!

pffi-pointer-set! pointer type offset value

Sets the value on a pointer on given offset. For example:

(define p (make-c-bytevector 128))

(pffi-pointer-set! p 'int 64 100)

Would set the offset of 64, on pointer p to value 100.

pffi-pointer-get

pffi-pointer-get pointer type offset -> object

Gets the value from a pointer on given offset. For example:

(define p (make-c-bytevector 128))

(pffi-pointer-set! p 'int 64 100)

(pffi-pointer-get p 'int 64)

> 100

string->c-bytevector

string->c-bytevector string -> pointer

Makes pointer out of a given string.

c-bytevector->string

c-bytevector->sring pointer -> string

Makes string out of a given pointer.

pffi-struct-make

pffi-struct-make c-type members . pointer -> pffi-struct

Creates a new pffi-struct and allocates pointer for it. The members

argument is a list of member names and types. For example:

(define color (pffi-struct-make 'color '((int8 . r) (int8 . g)

(int8 . b) (int8 .a))))

(define test (pffi-struct-make "struct test" '((int8 . r) (int8 .

g) (int8 . b) (int8 .a))))

C-type argument can be symbol or a string.

pffi-struct-pointer

pffi-struct-pointer pffi-struct -> pointer

Returns the pointer that holds the struct content. You need to use this when

passing a struct as a pointer to foreign functions.

(define s (pffi-struct-make 'test '((int . r) (int . g) (int .

b))))

(pffi-struct-pointer s)

pffi-struct-offset-get

pffi-struct-offset-get member-name -> number

Returns the offset of a struct member with given name.

pffi-struct-get

pffi-struct-get pffi-struct member-name -> object

Returns the value of the givens struct member.

pffi-struct-set!

pffi-struct-set! pffi-struct member-name value

Sets the value of the givens struct member. It is up to you to make sure that

the type of value is correct.

pffi-array-allocate

pffi-array-allocate type size

Allocates pointer array of given type and size.

pffi-array-pointer

pffi-array-pointer array

Returns the pointer of the array.

pffi-array?

pffi-array? object

Returns #t of given object is array, #f otherwise.

pffi-pointer->array

pffi-pointer->array pointer type size

Converts given pointer to an array of giben type and size.

pffi-array-get

pffi-array-get array index

Returns the value of given index from given array.

pffi-array-set!

pffi-array-set! array index value

Sets the given value of given index in given array.

pffi-list->array

pffi-list->array type list

Converts given list into C array of given type.

pffi-array->list

pffi-array->list type list length

Converts given C array into list of given type and length.

define-c-procedure

define-c-procedure scheme-name shared-object c-name return-type

argument-types

Defines a new foreign function to be used from Scheme code. For example:

(cond-expand

 (windows (define-c-library libc-stdlib '("stdlib.h")

"ucrtbase" '("")))

 (else (define-c-library libc-stdlib '("stdlib.h") "c" '(""

"6"))))

(define-c-procedure c-puts libc-stdlib 'puts 'int '(pointer))

(c-puts "Message brought to you by FFI!")

pffi-define-callback

pffi-define-callback scheme-name return-type argument-types procedure

Defines a new Sceme function to be used as callback to C code. For

example:

; Load the shared library

(cond-expand

 (windows (define-c-library libc-stdlib '("stdlib.h")

"ucrtbase" '()))

 (else (define-c-library '("stdlib.h") "c" '("" "6"))))

; Define C function that takes a callback

(define-c-procedure qsort libc-stdlib 'qsort 'void '(pointer int

int callback))

; Define our callback

(pffi-define-callback compare

 'int

 '(pointer pointer)

 (lambda (pointer-a pointer-b)

 (let ((a (pffi-pointer-get pointer-a 'int

0))

 (b (pffi-pointer-get pointer-b 'int

0)))

 (cond ((> a b) 1)

 ((= a b) 0)

 ((< a b) -1)))))

; Create new array of ints to be sorted

(define array (make-c-bytevector (* (c-size-of 'int) 3)))

(pffi-pointer-set! array 'int (* (c-size-of 'int) 0) 3)

(pffi-pointer-set! array 'int (* (c-size-of 'int) 1) 2)

(pffi-pointer-set! array 'int (* (c-size-of 'int) 2) 1)

(display array)

(newline)

;> (3 2 1)

; Sort the array

(qsort array 3 (c-size-of 'int) compare)

(display array)

(newline)

;> (1 2 3)

	Portable Foreign Function Interface for R7RS Documentation
	Portable Foreign Function Interface for R7RS
	Table of contents
	Goals
	Non goals
	Status
	Current caveats

	Roadmap
	Feature mplementation table
	Primitives
	Built upon
	Not started
	Other

	Documentation
	Dependencies
	Chibi
	Chicken
	Gauche
	Racket
	Kawa

	Installation
	Project local
	Linux
	Windows

	System global

	Reference
	Types
	Types
	Environment variables
	PFFI_LOAD_PATH

	Procedures and macros
	pffi-init
	c-size-of
	pffi-align-of
	define-c-library
	Notes
	make-c-null
	c-null?
	make-c-bytevector
	pffi-pointer-address
	c-bytevector?
	c-free
	pffi-pointer-set!
	pffi-pointer-get
	string->c-bytevector
	c-bytevector->string
	pffi-struct-make
	pffi-struct-pointer
	pffi-struct-offset-get
	pffi-struct-get
	pffi-struct-set!
	pffi-array-allocate
	pffi-array-pointer
	pffi-array?
	pffi-pointer->array
	pffi-array-get
	pffi-array-set!
	pffi-list->array
	pffi-array->list
	define-c-procedure
	pffi-define-callback

